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Outline (1)
Goal

Develop efficient preconditioners to simulate large floating structures.

Question

Can we reduce the compute resources needed while solving large problems?

Implementation

Can we implement this on Gridap? (Strong-form FSI coupling)
Can we use Trilinos as a part of the preconditioner?
Can we build an efficient interface between Trilinos and Gridap?
Can we solve this problem quickly?
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Outline (2)

Difficulties / Problem Characteristics

It is a multi-physics problem (Fluid and Solid).
It is a mixed-dimensional problem (Thin-solid assumption).
High-added mass effects.

• Low solid density (floating structure)
• Geometric factors - Long, thin, and slender solids.

Collaboration

Alexander Heinlein (TU Delft)
Oriol Colomés (TU Delft)

Filipe Cumaru (TU Delft)
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Introduction to Preconditioning

Why use a Preconditioner

Reduce the condition number. (Easier to solve!)
Multiphysics problems are heterogeneous.

• Easy to solve each physics block.
• Hard to solve the combined monolithic system.

Introduce DD methods that scale well in parallel.

Overlapping DD methods

Alternative Schwarz Algorithm
One Level Additive Schwarz methods
Two Level Additive Schwarz methods

Non-Overlapping DD methods

Dirichlet-Neumann Algorithm
Robin-Robin Algorithm
Robin-Neumann Algorithm
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Overlapping DD methods (1)

Alternative Schwarz methods

One of the older DD methods introduced in 1870 by H. A. Schwarz.
Iterative Algorithm.
Cannot be parallelized.
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Figure: Domain Ω
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Overlapping DD methods (2)

Adopted from Toselli and Widlund [3].

1-Level Additive Schwarz

Preconditioner:

P1AS =
∑

i

(RT
i A−1

i Ri)

Condition Number estimate

κ(P−1
1ASA) ≤ C(1 +

1

Hδ
)

2-Level Additive Schwarz

Preconditioner:

P2AS = RT
0 A−1

0 R0 +
∑

i

(RT
i A−1

i Ri)

Condition Number estimate

κ(P−1
2ASA) ≤ C(1 +

H
δ
)
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Overlapping DD methods (3)
Results

Figure: Scaling analysis
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Non-Overlapping DD methods (1)

Simple Elliptic problem

a1∆ul = f1 on Ωl

a2∆ur = f2 on Ωr

ulΓ = urΓ on ∂lr

a1∇ulΓ · nl + a2∇urΓ · nr = 0 on ∂lr


AII AIΓ 0 0
0 I 0 −I
0 0 BII BIΓ

AΓI AΓΓ BΓI BΓΓ
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∂ΩΩl Ωr

a b0

h

Figure: Domain Ω
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Non-Overlapping DD methods (2)

Dirichlet-Neumann Method

Algorithm:

a1∆uk+1
l = f1 on Ωl

uk+1
lΓ = uk

rΓ on ∂lr

a2∆uk+1
r = f2 on Ωr

a1∇uk+1
lΓ · nl + a2∇ûk+1

rΓ · nr = 0 on ∂lr

uk+1
rΓ = ωûk+1

rΓ + (1− ω)uk
rΓ

Preconditioner:

PDN =


AII AIΓ 0 0
0 I 0 0
0 0 BII BIΓ

AΓI AΓΓ BΓI BΓΓ


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Non-Overlapping DD methods (3)

Adopted from Marini and Quarteroni [2].

Dirichlet-Neumann Method

Convergence Criteria

relative error = 1− ω(
a1
a2

tanh(nπ(b−a)
H )

tanh(nπa
H )

+ 1) where n ∈ N

Optimum Relaxation Parameter

ωopt =
1

( a1

a2

tanh(π(b−a)
b )

tanh(πa
b ) + 1)
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Non-Overlapping DD methods (4)

Robin-Robin Method

Algorithm:

a1∆uk+1
l = f1 on Ωl

αfuk+1
lΓ +a1∇uk+1

lΓ ·nl = αfuk
rΓ−a2∇uk

rΓ·nr on ∂lr

a2∆uk+1
r = f2 on Ωr

αsuk+1
lΓ +a1∇uk+1

lΓ ·nl = αsuk+1
rΓ −a2∇ûk+1

rΓ ·nr on ∂lr

uk+1
rΓ = ωûk+1

rΓ + (1− ω)uk
rΓ

Mapping to the original problem:

Q =


I 0 0 0
0 αfI 0 I
0 0 I 0
0 −αsI 0 I



Preconditioning Techniques for Simulating Floating Structures Shreyas Prashanth 11 / 33



Non-Overlapping DD methods (5)

Robin-Robin Method

Preconditioner:

PRR = Q−1


AII AIΓ 0 0
AΓI αfI + AΓΓ 0 0
0 0 BII BIΓ

AΓI −αsI + AΓΓ BΓI BΓΓ + αsI


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Non-Overlapping DD methods (6)

Sample Results

Figure: Dirichlet-Neumann Figure: Robin-Robin
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Non-Overlapping DD methods

Summary

Diffusion Contrast a1 = a2 a1 = a2 a1 > a2 a1 > a2 a1 < a2 a1 < a2
Interface Position Center Asymmetric Center Asymmetric Center Asymmetric

Dirichlet-Neumann Method Best Best Bad Bad Good Good
Dirichlet-Robin Method Good Good Good Good Good Good
Robin-Neumann Method Good Good Bad Bad Good Good

Robin-Robin Method Good Good Best Best Best Best

Table: Summary for Non-Overlapping methods applied on the coupled elliptic PDE
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Toy FSI Problem (1)
Adopted from Fernández, Mullaert, and Vidrascu [1].

Computational Domain

d

Γ2 Γ3

Γ1

ΩF

Σ

Figure: Computational domain for the toy FSI problem
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Toy FSI Problem (2)

Governing Equations

Fluid Domain
ρf
∂u
∂t

+∇p = 0 on Ωf

∇ · u = 0 on Ωf

u · nΓ = 0 on Γ1

p = 0 on Γ2

Solid Domain and Interface
ρsϵd̈ + Ld = p on Σ

u = ḋ on Σ
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Toy FSI Problem (3)
Discrete Problem

Fluid Problem CII GI CIΓ
CΓI GΓ CΓΓ

DI DΓ 0

ufI
ufΓ
p

 =

rfI
rfΓ
rfp


Solid Problem

[NΓΓ][ds] = [rs]

Coupled Problem 
CII GI CIΓ 0
DI 0 DΓ 0
0 0 I −∂t(I)

CΓI GΓ CΓΓ NΓΓ




ufI
p

ufΓ
ds

 =


rfI
rfp
0

rfΓ + rs


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Toy FSI Problem (4)

Discrete Problem

Coupled Problem (Robin-Robin Transmission Conditions)
CII GI CIΓ 0
DI 0 DΓ 0
CΓI GΓ αfI + CΓΓ −αf ∗ ∂t(I) + NΓΓ

CΓI GΓ −αsI + CΓΓ αs ∗ ∂t(I) + NΓΓ




ufI
p

ufΓ
ds

 =


rfI
rfp

rfΓ + rs
rfΓ + rs



Preconditioning Techniques for Simulating Floating Structures Shreyas Prashanth 18 / 33



Preconditioners for the FSI Problem (1)
Dirichlet-Neumann

PDN =


CII GI CIΓ 0
DI 0 DΓ 0
0 0 I 0

CΓI GΓ CΓΓ NΓΓ



Robin-Robin

PRR = Q−1 ∗


CII GI CIΓ 0
DI 0 DΓ 0
CΓI GΓ αfI + CΓΓ 0
CΓI GΓ −αsI + CΓΓ αs ∗ ∂t(I) + NΓΓ


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Preconditioners for the FSI Problem (2)
Robin-Neumann

PRN = Q−1 ∗


CII GI CIΓ 0
DI 0 DΓ 0
CΓI GΓ αfI + CΓΓ 0
CΓI GΓ CΓΓ NΓΓ


Added Mass Operator

Let the operator MA : H1/2(Σ)− > H1/2(Σ) be defined for each gϵH−1/2(Σ), where we set
MA(g) = q|Σ where qϵH1(Ω) for the following problem.

−∆q = 0 on Ω

∂q
∂n

= g on Σ
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FSI Preconditioners Stability (1)
Modified Problem

Applying the divergence operator on the original problem.

−∆p = 0 on Ωf

∇p · nfs = 0 on Γ1

ρsϵd̈ + Ld = p · nfs on Σ

∇p · nfs = −ρf d̈ on Σ

Interface Equation (Dirichlet-Neumann method)

ρsϵ[
d̂k+1 − 2dn + dn−1

δt2
] + ρfMA[

dk − 2dn + dn−1

δt2
] + Ld̂k+1 = 0 on Σ
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FSI Preconditioners Stability (2)
Dirichlet-Neumann method

Convergence Criteria:

| (1− ω)(ρsϵ+ Lδt2)− ωρfµi

ρsϵ+ Lδt2
| < 1

Range of acceptable Relaxation Parameter:

0 < ω <
2(ρsϵ+ Lδt2)

ρsϵ+ ρfµmax + Lδt2

Robin - Neumann method

Optimized Relaxation parameter (Fernández et al. (2013))

αf =
ρsϵ

∆t
+ L∆t
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FSI Preconditioners Stability (3)

Robin-Neumann Method

Interface Equation:

(
L∆t2 + ρsϵ

ρf
M−1

A + I)pk+1 = f(dn)

Above Difference equation is an explicit update equation.
This method is not affected by the Added mass effect as the above difference equation
is always stable.
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FSI Preconditioners Stability (4)
Results

Figure: FSI Preconditioner Stability
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Parallel Preconditioners for the FSI problem (1)
Linear System


NΓΓ CΓI CΓΓ GΓ

0 CII CIΓ GI
−∂t(I) 0 I 0

0 DI DΓ 0




d
ui
uΓ

p

 =


rfΓ + rs

rf
0
rp



Dirichlet-Neumann Preconditioner

PDNparallel =


NΓΓ CΓI CΓΓ GΓ

0 CII CIΓ GI
0 0 I 0
0 DI DΓ 0


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Parallel Preconditioners for the FSI problem (2)
Mapping matrix

Q =


I 0 −αsI 0
0 I 0 0
I 0 αfI 0
0 0 0 I



Robin-Robin Preconditioner

PRRparallel =


αs ∗ ∂t(I) + NΓΓ CΓI −αsI + CΓΓ GΓ

0 CII CIΓ GI
0 CΓI αfI + CΓΓ GΓ

0 DI DΓ 0

 ∗ Q−1
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Parallel Preconditioners for the FSI problem (3)

Generic Preconditioner structure

P =

[
Solid Block Coupling Terms

0 Fluid Block

]

Solvers Implementation

Block preconditioner applied with a FGMRES solver implemented using the Gridap
solvers package.
Overlapping Schwarz preconditioners applied on a GMRES solver to solve the blocks
within the preconditioner implemented using Trilinos.
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FSI Block Preconditioners Results (1)

Optimal Robin Parameter

αf = γ(
ρsϵ

∆t
+ L∆t)

Variation of Length

Length = 6 Length = 50 Length = 100 Length = 1000
Dirichlet-Neumann 17 38 52 157
Robin-Neumann 6 6 6 6

Table: Number of outer iterations for FSI block preconditioners
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FSI Block Preconditioners Results (2)
Solid Density Variation
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HPC Implementation
Implementation

Developed New functionalities in Gridap to implement strong form coupling in serial
and parallel.
Developed an interface between Trilinos and Gridap.

Figure: Strong scaling analysis Figure: Weak scaling analysis
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Conclusions

The Robin-Neumann Preconditioner appears to be the robust block preconditioner.
• It scales with length of the domain.
• It scales with the Solid density of the domain.

The implementation of the system on Gridap and Trilinos scales and works well.
• Demonstrated the ability to solve large problems on DelftBlue.

Discussions and further work

Better understand the convergence behavior of the Schwarz method for the Fluid and
Solid block.
Conduct a parametric analysis and implement the block preconditioners for the
floating structure problem.
Next Phase : Extend the current framework for non-linear problems.
Other implementations - Solve the preconditioner only once and apply as a linear
operator.
Limitation - Current implementation only works for conforming meshes. Explore
approaches based on weak coupling and Lagrange multipliers.
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Thank you for your attention!

Questions ?
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