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Abstract

Floating solar arrays are increasingly being pursued around the world as a form of renewable

energy source. This has increased interest in understanding the behavior of floating structures

in offshore environments. Fluid-Structure Interaction models are developed and used to simulate

this phenomena. In a monolithic linear system, the fluid and solid domains are solved together

at the same time. These systems are very large and ill-conditioned, making the use of the

monolithic set of equations difficult to solve using iterative solvers.

To solve this issue, this project involves developing preconditioning strategies for these monolithic

systems. Using non-overlapping domain decomposition methods, we introduce block precon-

ditioners for this linear monolithic system. These block preconditioners are developed to be

immune to the instabilities caused by the added mass effect. This makes the block preconditioners

developed robust to the change in the geometry of the solid domain and the density ratio between

the solid and fluid, achieving excellent convergence properties. To make the system suitable to

simulate on parallel computing clusters, overlapping domain decomposition methods are applied

while solving the inner blocks in the block preconditioner.

This preconditioning system allows us to simulate very large systems on existing parallel comput-

ing hardware. This system is implemented using Gridap.jl, an open-source finite element library,

and Trilinos, an open-source library for solving large linear systems. Gridap is written using the

Julia programming language with Julia’s JIT compiler to provide an easy and understandable

interface, yet being very efficient and fast. Trilinos is written in the C++ programming language,

providing high-performance functionalities to solve large linear systems on large distributed

parallel systems. Through this project, a seamless interface between Gridap and Trilinos is built.

This project shows that the block preconditioner based on the Robin-Neumann coupling between

the fluid and solid domain is most suited for these problems. The developed implementation

using Gridap and Trilinos is shown to be efficient using the strong and weak scaling tests while

simulating large problems in parallel compute clusters. The project is concluded by simulating a

floating structure problem using the developed system.
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Chapter 1

Introduction

Offshore floating solar platforms have been gaining popularity as a renewable energy source

worldwide. An accurate analysis of the hydro-elastic response of these systems has become

necessary to design them. Monolithic fluid-structure interaction solvers [15] have been developed

to analyze these hydro-elastic responses computationally of these very large floating structures

(VLFS). These monolithic linear systems, where we solve the fluid and solid equations together,

are very large and ill-conditioned, making them difficult to solve using iterative solvers.

In this project, we develop preconditioners for these monolithic linear systems, making it easier

for us to solve them using iterative solvers on existing parallel computing platforms. These

preconditioners are developed based on the concepts of overlapping and non-overlapping domain

decomposition methods. Through this project, we also understand the implementation of these

systems using Gridap, an open-source finite element library, and Trilinos, an open-source library

for solving large linear systems.

We start by giving a brief introduction to domain decomposition methods in chapter 2. We

start by introducing non-overlapping domain decomposition methods for elliptic PDEs and their

implementation. We refer to [33], [9], [13] and [24]. Using this understanding, we look at block

preconditioners for the Stokes fluid flow problem. We refer to [37] and [10]. We then introduce

overlapping domain decomposition methods, primarily limiting ourselves to one-level additive

Schwarz and two-level additive Schwarz with a Lagrangian-based coarse space. We refer to [43],

[11] and [35].

In chapter 3, we develop block preconditioners for thin-structured FSI problems. We look at

the various coupling algorithms (Dirichlet-Neumann and Robin-Robin) developed and their

convergence specifically for thin-structured FSI problems. Using these coupling algorithms, we

develop block preconditioners that can be applied to the monolithic system. We refer to [17], [5],

[6], [31], [12], [7], [30], [23] and [19].
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Introduction 2

We then look at defining a floating structure problem to which we can apply the block precon-

ditioner system developed. We refer to [1] and [15]. The developed block preconditioners are

applied to this problem.

We implement the developed system using Gridap [46] and Trilinos [41]. The package Gri-

dap Solvers [32] is used to implement the block preconditioners and the outer matrix solver.

Distributed finite element matrix assembly and processing are implemented via GridapDis-

tributed [4]. Distributed matrix data structures in GridapDistributed are implemented with

the PartitionedArrays.jl package. The overlapping domain-decomposition-based preconditioner

is implemented using FROSch [27] present in the ShyLU [36] package of Trilinos, Belos, the

iterative solver package in Trilinos, and Amesos2, the direct solvers package in Trilinos [8]. While

developing an interface between Trilinos and Gridap, CxxWrap.jl [28] is used to run the C++

executable from the Julia environment.

In chapter 4, we discuss the implementation methodology and results. We show the convergence

analysis of all the methods discussed previously. We start with showing results for the non-

overlapping and overlapping DD methods for an elliptic PDE problem. We then look at the

results of the block preconditioner implementation on a toy FSI problem implemented using the

preconditioned Richardson solver. Following this, we look at the results of the parallel block

preconditioner implementation on the toy FSI problem implemented using the FGMRES matrix

solver. Through this example, we show that we achieve optimal strong and weak scaling while

simulating a large FSI toy problem. We then implement the proposed system for the floating

structure problem for an infinite membrane with a damping zone and an infinite membrane with

periodic boundary conditions.



Chapter 2

Introduction to Preconditioning and

Domain-Decomposition Methods

2.1 The linear system and the preconditioners

Consider a linear system Ax = b. If the system is very big and complex, then it becomes difficult

to solve it. Therefore, we have introduced a preconditioner P−1 that makes it easier to solve

the system. There are two types of preconditioners. A left preconditioner would be applied to

the linear system like this P−1Ax = P−1b. A right preconditioner would be applied to a linear

system like this AP−1y = b with y = P−1x.

A preconditioner should have the following traits -

• Cheap to compute (easy to apply P−1).

• Make it easier to solve the problem. We will look into detail on what this means in further

sections.

The two extremes of a preconditioner can be the following.

• A preconditioner can be the Identity matrix I. In this case, it is very easy (trivial) to

compute the preconditioner P−1, but it does make it easier to solve the problem as the

preconditioned linear system would be identical to the original linear system.

• A preconditioner can be A−1. In this case, the preconditioned linear system would directly

yield us the answer. However, in order to compute A−1, it would amount to solving the

original linear system. Hence we have not made the problem easier to solve.

3



Chapter 2. Introduction to Preconditioning and Domain-Decomposition Methods 4

While solving large linear systems, we use iterative solvers where we iterate towards a solution

from an initial guess. To understand the convergence properties of iterative solvers, we introduce

the condition number of a matrix. The condition number (κ) of a matrix A as introduced in [45]

is given by the following, where λ is an eigenvalue of matrix A.

κ(A) =

∣∣∣∣λmax

λmin

∣∣∣∣
If κ(A) ≈ 1, then we can say that the linear system is well conditioned and it’s easy to find the

solution through iterative solvers. But when κ(A) is large, it gets difficult to solve using iterative

methods due to slow or no convergence to a solution.

2.1.1 Iterative Richardson method

The Richardson method [38] is an iterative method to solve a linear system Ax = b. Precondi-

tioners and relaxation parameters are used to accelerate convergence. In these methods, the

solution is iteratively updated. The update step is derived as follows.

x = x+ b−Ax (2.1)

Rewriting (2.1) to update the solution iteratively gives the following. We use the superscript k

to indicate the iteration steps.

xk+1 = xk + b−Ax

The iteration step when a preconditioner and relaxation is used is given by the following.

xk+1 = xk + αkP
−1(Axk − b)

The iteration matrix for this modified system is I − αkP
−1A. Convergence occurs only if the

spectral radius of the iteration matrix is less than one. This can be controlled by using an

optimal preconditioner and relaxation parameter.

2.1.2 GMRES method

This is an iterative Krylov method to find the solution of a linear system Ax = b introduced in

[40]. In this method, the solution is constructed from the Krylov subspace.

Kk(A, r0) = span{r0, Ar0, A2r0, . . . , A
k−1r0}
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For an SPD matrix, the convergence is directly related to the condition number of the matrix.

We can also look at the eigenvalue distribution of the matrix to understand the convergence of

the linear system. The convergence can be influenced by using a preconditioner.

We can use a preconditioner along with the GMRES method. The GMRES method assumes

that the preconditioner remains constant; hence, it calculates the preconditioner only once and

uses this preconditioned Krylov space for all the other iterations. But when we use iterative

solvers in the inner solves of the preconditioner, then the preconditioner actually changes every

iteration as a tolerance for the error is set and is less than the machine precision. Therefore, a

flexible GMRES method [39] is introduced that calculates the preconditioner every iteration.

2.2 Block preconditioners

Let us consider that we have the following linear system where the coefficient matrix is partitioned

into sub-matrices or blocks.

AX =

[
A11 A12

A21 A22

][
X1

X2

]
=

[
f1

f2

]

We can derive preconditioners for the above block linear system called block preconditioners.

2.2.1 Preconditioners based on block LU factorization

In this section, we look at how we construct block preconditioners by matrix factorization. The

LU factorization of matrix A is as follows:

A = LU =

[
A11 0

A12A
−1
11 A22 −A12A

−1
11 A21

][
I A21

0 I

]

A22 −A12A
−1
11 A21 is denoted as s or the Schur complement. L can be used as a preconditioner if

we can find a good and cheap estimate for A−1 and s−1.

2.2.2 Block Gauss-Seidel preconditioner

We can also construct a preconditioner based on the block Gauss-Seidel (GS) method. This

preconditioner is based on the iterative Gauss-Seidel method. These are called block GS

preconditioners. For matrix A, we have:-

PGS =

[
A11 0

A12 A22

]
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P−1
GS =

[
A−1

11 0

−A−1
11 A12A

−1
22 A−1

22

]
Through this preconditioner, we modify the problem where we can find the inverses of each

diagonal block (A11, A22) independently and use them to construct the preconditioner.

2.3 Non-overlapping domain-decomposition methods

Non-overlapping domain-decomposition methods can be constructed by using the idea of the

block Gauss-Seidel preconditioner previously discussed. We will introduce a finite element

problem through which these methods are discussed. These methods are adopted from [34], [9]

and [13].

2.3.1 Introducing a coupled elliptic PDE problem

We consider the following coupled problem. There are two different Poisson problems introduced

on the left domain (Ωl), and the right domain (Ωr) as the left problem and the right problem

respectively.

∂ΩΩl Ωr

a b0

h

Figure 2.1: Computational domain for the coupled elliptic PDE problem
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Term Meaning Term Meaning

ul Variable on the left domain ur Variable on the right domain

a1 Diffusion coefficient for the left do-

main

a2 Diffusion coefficient for the right do-

main

Ωl Left domain Ωr Right domain

∂lr Left-Right domain interface n Normal vector to the interface

A Discrete finite element matrix on the

left domain.

B Discrete finite element matrix on the

right domain.

Table 2.1: Definitions of terms related to the coupled elliptic PDE problem.

The equations governing this problem are as follows.

a1∆ul = f1 on Ωl

a2∆ur = f2 on Ωr

ulΓ = urΓ on ∂lr

a1∇ulΓ · nl + a2∇urΓ · nr = 0 on ∂lr

Term Meaning Term Meaning

uh Trial function vh Test function

Ωl Whole domain Γd Dirichlet boundary

Uh Trial space V h Test space

Table 2.2: Finite element terms related to the coupled elliptic PDE problem

The trial space for the following problem is defined as follows.

Uh = {uh ∈ H1(Ω) : uh = u0 on ΓD}

The test space for the following problem is defined as follows.

V h = {vh ∈ H1(Ω) : vh = 0 on ΓD}
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The discrete form of this coupled problem after finite element discretization yields the following.
AII AIΓ 0 0

0 I 0 −I

0 0 BII BIΓ

AΓI AΓΓ BΓI BΓΓ




un+1
lI

un+1
lΓ

un+1
rI

un+1
rΓ

 =


rl

0

rr

rΓ

 (2.2)

2.3.2 Dirichlet-Neumann method

2.3.2.1 Algorithm

Under the Dirichlet-Neumann Algorithm, the left Poisson problem is solved using the Dirichlet

data from the right Poisson problem of the previous iteration, and the right Poisson problem is

solved using the Neumann data from the left Poisson problem that was just solved. Here ω is

the relaxation parameter introduced.

a1∆uk+1
l = f1 on Ωl

uk+1
lΓ = ukrΓ on ∂lr

a2∆uk+1
r = f2 on Ωr

a1∇uk+1
lΓ · nl + a2∇ûk+1

rΓ · nr = 0 on ∂lr

ûrΓ is relaxed each iteration using the relaxation parameter ω.

uk+1
rΓ = ωûk+1

rΓ + (1− ω)ukrΓ

The algorithm expressed in discrete form yields the following.
AII AIΓ 0 0

0 I 0 0

0 0 BII BIΓ

AΓI AΓΓ BΓI BΓΓ




uk+1
lI

uk+1
lΓ

uk+1
rI

ûk+1
rΓ

 =


rl

ukrΓ

rr

rΓ

 (2.3)

uk+1
rΓ = ωûk+1

rΓ + (1− ω)ukrΓ
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Applying the preconditioner PDN shown below on the monolithic system 2.2, we get the iterative

discrete system 2.3.

PDN =


AII AIΓ 0 0

0 I 0 0

0 0 BII BIΓ

AΓI AΓΓ BΓI BΓΓ



2.3.2.2 Convergence criteria

We can solve the problem analytically using the Dirichlet-Neumann algorithm to find the relative

error. This result is taken from [33].

e = 1− ω(
a1tanh(

nπ(b−a)
H )

a2tanh(
nπa
H )

+ 1) where n ∈ N (2.4)

For the algorithm to converge to a solution, we need the relative error (e) to be less than one for

every n. We can manipulate the relaxation parameter ω to achieve this.

From 2.4 we can observe that when a = b, it is possible to have e = 0 for all n. This means we

can reach the solution in one iteration if we choose an optimal ω.

ωopt =
1

a1
a2

+ 1
when a = b

For all other cases, we just minimize e for n = 1. Then we get ωopt as follows.

ωopt =
1

(
a1tanh(

π(b−a)
b

)

a2tanh(
πa
b
) + 1)

2.3.3 Robin-Robin method

The original problem had Dirichlet and Neumann transmission conditions on the interface. We

introduce new transmission conditions that are the linear combination of the Dirichlet and

Neumann transmission conditions. αf and αs are the parameters introduced here.

a1∆ul = f1 on Ωl

αfulΓ + a1∇ulΓ · nl = αfurΓ − a2∇urΓ · nr on ∂lr

a2∆ur = f2 on Ωr

αsulΓ + a1∇ulΓ · nl = αsurΓ − a2∇urΓ · nr on ∂lr
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The discrete form of this problem is as follows.
AII AIΓ 0 0

AΓI AΓΓ + αfI BΓI BΓΓ − αfI

0 0 BII BIΓ

AΓI AΓΓ − αsI BΓI BΓΓ + αsI




ulI

ulΓ

urI

urΓ

 =


rl

rΓ

rr

rΓ


A mapping Q is introduced that maps the old problem to the new problem.

Q =


I 0 0 0

0 αfI 0 I

0 0 I 0

0 −αsI 0 I



2.3.3.1 Algorithm

We solve the left problem using the Robin transmission data of the right problem of the previous

iteration, and then we solve the right problem using the Robin transmission data of the left

problem we just solved. The algorithm is as follows:

a1∆uk+1
l = f1 on Ωl

αfu
k+1
lΓ + a1∇uk+1

lΓ · nl = αfu
k
rΓ − a2∇ukrΓ · nr on ∂lr

a2∆uk+1
r = f2 on Ωr

αsu
k+1
lΓ + a1∇uk+1

lΓ · nl = αsu
k+1
rΓ − a2∇ûk+1

rΓ · nr on ∂lr

The relaxation step for ûrΓ is introduced as follows:

uk+1
rΓ = ωûk+1

rΓ + (1− ω)ukrΓ

The algorithm expressed in discrete form yields the following.
AII AIΓ 0 0

AΓI AΓΓ + αfI 0 0

0 0 BII BIΓ

AΓI AΓΓ − αsI BΓI BΓΓ + αsI




uk+1
lI

uk+1
lΓ

uk+1
rI

uk+1
rΓ

 =


rl

rΓ −BΓIu
k
rl − (BΓΓ−αf I)u

k
rΓ

rr

rΓ


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We can construct a Robin-Robin preconditioner PRR that produces the above iterative linear

system for the original linear system 2.2.

PRR = Q−1


AII AIΓ 0 0

AΓI αfI +AΓΓ 0 0

0 0 BII BIΓ

AΓI −αsI +AΓΓ BΓI BΓΓ + αsI


We can construct a class of Robin-Robin preconditioners by varying these Robin parameters.

The following table is a summary of all the algorithms we can construct from the generalized

Robin-Robin algorithm.

Name αf αs

Dirichlet-Neumann Inf 0

Dirichlet-Robin Inf Positive bounded value

Robin-Neumann Positive bounded value 0

Robin-Robin Positive bounded value Positive bounded value

Table 2.3: Summary of all the algorithms relating to the Robin-Robin method

2.3.4 Block preconditioner for the Stokes problem

2.3.4.1 Stokes problem definition

The governing equations associated with the non-transient incompressible Stokes fluid flow

problem are shown below. We consider the computational domain Ω shown in figure 2.2 while

defining the problem.

Term Meaning Term Meaning

u Fluid Velocity p Pressure

f Forcing function g Dirichlet Boundary Data

Table 2.4: Definition for the terms in the stokes problem

∆u−∇p = f on Ω

∇ · u = 0 on Ω

u = g on ∂Ω
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Ω

∂Ω

Figure 2.2: Computational domain for the stokes problem

Term Meaning Term Meaning

uh Velocity trial function vh Velocity test function

ph Pressure trial function qh Pressure test function

Ω Whole domain Γd Dirichlet boundary

Uh Velocity trial space V h Velocity test space

P h Pressure trial space Qh Pressure test space

Table 2.5: Finite element terms related to the stokes problem

The trial and test spaces are defined as the following.

Uh = {uh ∈ H1(Ω) : uh = u0 on ΓD}

V h = {vh ∈ H1(Ω) : vh = 0 on ΓD}

P h = {ph ∈ L2(Ω)}

Qh = {qh ∈ L2(Ω) :

∫
Ω
qh dΩ = 0}

P2 P1 elements are used here as they satisfy the inf-sup condition [3] to provide a stable finite

element solution. We can write the discrete form for this problem as follows.[
A BT

B 0

][
u

p

]
=

[
f

0

]
(2.5)
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2.3.4.2 Algorithm

The goal is to develop a block preconditioner for the given Stokes problem. It is also interesting

to observe that this is in the form of a saddle point problem as seen in 2.5. Using the block

preconditioner that is based on a block LU decomposition as mentioned in [16], we get the

following.

P =

[
A BT

0 S

]

S = −BA−1BT

The challenge here is to cheaply estimate A−1 and S−1. For the selected problem, as we take

the viscosity to be 1, we can easily approximate the Schur complement as the pressure mass

matrix Mp as mentioned in [37]. A is an easily invertible matrix in a tri-diagonal and positive

definite form. This changes the preconditioner to the following.

P =

[
Â BT

0 Mp

]

2.4 Overlapping Domain-Decomposition methods

2.4.1 Introducing an elliptic PDE problem

We consider the following one-dimensional coupled problem.

∂2u

∂x2
= 1 where x ∈ [0, 1] (2.6)

u(0) = u(1) = 0

2.4.2 Alternating Schwarz methods

To understand these methods, let us first create overlapping subdomains for the problem.

Ωl
ΩrΓr

Γl

ΓdΓd

Figure 2.3: Overlapping Subdomains on domain Ω
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We refer to [22] to understand the history of the Schwarz methods. The alternating Schwarz

iterative algorithm to solve 2.6 would yield the following.

∂2uk+1
l

∂x2
= 1 where x ∈ Ωl

uk+1
l = ukr on Γl

∂2uk+1
r

∂x2
= 1 where x ∈ Ωr

uk+1
r = uk+1

l on Γr

This algorithm was first introduced in the 1800s to solve problems in complex geometries. From

the algorithm, we can see that we solve the left Poisson problem first and use the right Poisson

problem solution of the previous iteration step as the boundary condition for the left problem.

Then we solve the right Poisson problem using the solution of the left Poisson problem as the

boundary condition. These steps are repeated until the solution converges along the whole

domain.

It is important to note that this algorithm cannot be implemented in parallel. Hence, we

introduce the one-level additive Schwarz method.

2.4.3 One-level additive Schwarz method

We try to parallelize the alternating Schwarz method. We introduce the Jacobi-Schwarz algorithm,

and it is as follows.

∂2uk+1
l

∂x2
= 1 where x ∈ Ωl

uk+1
l = ukr on Γl

∂2uk+1
r

∂x2
= 1 where x ∈ Ωr

uk+1
r = ukl on Γr

Here it can be noted that on each subdomain, we can solve independently during each iteration.

We now look to define the discretizations and derive the discrete form for this problem.
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Term Meaning Term Meaning

u Trial function v Test function

uhi Trial function for the ith subdomain vhi Test function for the ith subdomain

Ω Whole domain Ωi Domain of the ith subdomain

Uh Trial space V h Test space

Uh
i Trial space for the ith subdomain V h

i Test space for the ith subdomain

A Stiffness matrix for the problem Ai Stiffness matrix for the ith subdomain

Table 2.6: Finite element terms related to the elliptic PDE problem

The discrete problem for 2.6 would be the following.

Au = f

Introducing a restriction operator that does the following mapping for each subdomain. Here V

represents the global finite element space and Vi represents the local finite element space of a

subdomain.

RT
i : Vi → V

Then the finite element space for the whole problem can be stitched up as follows using the local

finite element spaces and its associated restriction operators.

V =
∑
i

RT
i V i

Relating the local bilinear form to the bilinear form of the problem, we get the following.

ai(u, v) = a(RT
i ui, R

T
i vi) (2.7)

Using 2.7, we can get the following relationship.

Ai = RiAR
T
i

2.4.3.1 Algorithm

In the additive Schwarz algorithm [43], the problem is solved in all subdomains at the same time

using solutions of other subdomains as boundary conditions from the previous iteration. It is

also to be noted that during each iteration, in the overlap region, the solution is a combination

of contributions from neighboring subdomains, which are computed independently and then

aggregated additively.
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The contribution from each local subdomain towards the global solution would be as follows.

u|ithcontribution = (RT
i A

−1
i Ri)f

In this algorithm, all the contributions are added to form the global solution.

u =
∑
i

(RT
i A

−1
i Ri)f (2.8)

If we introduce some sort of restriction in this addition, then we get the restrictive additive

Schwarz method. Here the restriction is based on having weighted contributions from all

subdomains based on the partition of unity. Di is a diagonal matrix filled with positive numbers

that act as these weights.

u =
∑
i

(RT
i DiA

−1
i Ri)f

Now we try to develop a preconditioner that converts the original problem to 2.8. We define this

as the one-level additive Schwarz preconditioner.

P1AS =
∑
i

(RT
i A

−1
i Ri)

2.4.3.2 Convergence criteria

The condition number estimate of the one-level additive Schwarz preconditioned system applied

on exact solvers is shown below. This is taken from [43].

κ(P−1
1ASA) ≤ C(1 +

1

Hδ
)

Here H represents the size of the subdomains and δ represents the size of the overlap. As we

increase the number of subdomains for a particular problem, the subdomain size H decreases

accordingly. So, we can say that as the number of subdomains increases, the condition number

of the system increases without any upper bound. As we know that having a large condition

number is equal to difficulty in solving the problem, this negates the use of the preconditioner.

Therefore, the one-level additive Schwarz preconditioner is not scalable.

2.4.4 Two level additive Schwarz method

This method solves the key problem associated with the one-level additive Schwarz method

relating to scalability. We will consider the same discrete problem considered for the one-level

additive Schwarz method.
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2.4.4.1 Algorithm

In this method, a coarse problem is introduced as mentioned in [43], in addition to the problems

associated with each local subdomain. For simplicity, we assume that this coarse problem is

introduced on a triangulation τc that is nested within τ . The restriction operator R0 maps the

finite element space V of the whole domain to the constructed coarse domain V0. The restriction

operator R0 is the interpolation of the coarse basis function onto the fine mesh τ .

The global solution we get through this algorithm is the following.

u = (RT
0 A

−1
0 R0 +

∑
i

(RT
i A

−1
i Ri))f (2.9)

Now we try to develop a preconditioner that converts the original problem to 2.9. We define this

as the two-level additive Schwarz preconditioner.

P2AS = RT
0 A

−1
0 R0 +

∑
i

(RT
i A

−1
i Ri)

2.4.4.2 Convergence criteria

The condition number estimate we get for using the two-level additive Schwarz method is as

follows, obtained from [43].

κ(P−1
2ASA) ≤ C(1 +

H

δ
)

We can observe that as the number of subdomains increases, there is an upper bound for

the condition number. We can therefore say that this method will remain well-conditioned

irrespective of the number of subdomains we choose for a problem. Therefore, this method is

scalable.



Chapter 3

Block Preconditioners for

Fluid-Structure Interaction Problems

3.1 Introduction of the toy problem

In this section, we introduce a toy problem adapted from [21] through which we develop the

block preconditioners required. In this thesis, we will be limiting our study to the thin-solid

assumption. This means that the solid domain and the fluid-solid interface domain remain the

same. The thin solid assumption is made for the following reasons.

• The solid has a very small thickness to length ratio.

• The response in primarily governed by the bending dominated behavior where transverse

displacements are very minimal.

• This reduces the number of unknown degrees of freedom required in the simulation.

The computational domain that is used for this particular toy problem in this thesis is shown

below.

d

Γ2 Γ3

Γ1

ΩF

Σ

Figure 3.1: Computational domain for the toy FSI problem

18
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Term Meaning Term Meaning

ΩF Fluid domain Σ Solid/interface domain

u Fluid velocity p Fluid pressure

n Normal vector towards the inter-

face

d Solid displacement

ρf Fluid density ρs Solid density

ϵ Solid thickness E Young’s modulus

R Radius Poisson’s ratio ν

L Eϵ
R2(1−ν2)

ui Fluid velocity trial function de-

fined on Ωf \ Σ
vi Fluid velocity test function de-

fined on Ωf \ Σ
uΓ Fluid velocity trial function de-

fined on Σ

vΓ Fluid velocity test function de-

fined on Σ

p Fluid pressure trial function q Fluid pressure test function

d Solid displacement trial function s Solid displacement test function

Ui Fluid velocity trial space defined

on Ωf \ Σ
Vi Fluid velocity test space defined

on Ωf \ Σ
UΓ Fluid velocity trial space defined

on Σ

VΓ Fluid velocity test space defined

on Σ

P Fluid pressure trial space Q Fluid pressure test space

D Solid displacement trial space S Solid displacement test space

CII Matrix constructed from space

Ui and Vi

CIΓ Matrix constructed from space

Ui and VΓ

CΓI Matrix constructed from space

UΓ and Vi

CΓΓ Matrix constructed from space

UΓ and VΓ

NΓΓ Matrix constructed from space D

and S

DI Matrix constructed from space

Ui and Q

DΓ Matrix constructed from space

UΓ and Q

rfΓ Residual constructed from space

VΓ

rp Residual constructed from space

Q

rf Residual constructed from space

Vi

rs Residual constructed from space

S

Jx = r Discrete system for the toy prob-

lem

Table 3.1: Definition of terms relating to the toy FSI problem

A generalized string model is used to model the solid domain taken from [12]. The following are

the equations that are used as the governing equations for this problem. We will refer to this as



Chapter 3. Block Preconditioners for Fluid-Structure Interaction Problems 20

the toy problem going forward.

• Fluid domain

ρf
∂u

∂t
+∇p = 0 on Ωf

∇ · u = 0 on Ωf

u · nΓ = 0 on Γ1

p = 0 on Γ2 ∪ Γ3

• Solid domain and the interface

ρsϵd̈+ Ld = p · nfs on Σ (3.1)

u = ḋ on Σ (3.2)

The fluid velocity and solid displacement finite element spaces are in H1. The fluid pressure

finite element space is in L2. Second-order Lagrangian finite elements are used as interpolation

functions for fluid velocity and solid displacement. First-order Lagrangian finite elements are

used for fluid pressure. The weak form of the system is given as follows.∫
(ρf

∂u

∂t
· v)Ωf −

∫
(p(∇ · v))Ωf = −

∫
(pΓ2v · n)dΓ2 −

∫
(pΓ1v · n)dΓ1

∫
((∇ · u)q)dΩf = 0

∫
(ρsϵ

∂2d

∂t2
s+ Lds)dΣ =

∫
psdΣ

For the purpose of understanding the numerical behavior related to the coupling algorithms, we

modify these equations by applying the divergence operator. We will refer to this problem as

the modified toy problem going forward.

−∆p = 0 on Ωf

∇p · nfs = 0 on Γ1

ρsϵd̈+ Ld = p on Σ

∇p · nfs = −ρf d̈ on Σ

(3.3)
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To understand how we get the Neumann boundary condition on the Fluid-Solid interface (3.3),

we look at the weak form of the fluid equation in the modified toy problem.∫
(q∆p)dΩf =

∫
((∇p · nfs)trΣ(q))dΣ−

∫
(∇q · ∇p)dΩf

(∇p · nfs) is defined as −ρf
∂u
∂t according to the toy problem. As Dirichlet boundary conditions

on u have been imposed according to the toy problem, −ρf
∂u
∂t would be the Neumann boundary

condition we would impose on the interface in the modified toy problem.

Now we will introduce a new term called the added mass operator or the Stekloff Poincaré

operator adopted from [12]. For a finite element problem, this operator gives the trace of the

solution along for the Neumann boundary (Neumann to Dirichlet map). The formal definition

of this operator MA is given below.

Let the operator MA : H1/2(Σ)− > H1/2(Σ) be defined for each gϵH−1/2(Σ), where we set

MA(g) = q|Σ where qϵH1(Ω) for the following problem.

−∆q = 0 on Ω

∂q

∂n
= g on Σ

∂q

∂n
= 0 on Γ1

q = 0 on Γ2

3.2 Coupling algorithms

We derive all the expressions using a simple backward difference scheme for the time discretization.

3.2.1 Explicit Dirichlet-Neumann method

3.2.1.1 Algorithm

In this coupling algorithm, the fluid and solid equations are solved staggered in time. The fluid

problem is solved using the interface Dirichlet data of the solid problem from the previous time

step, and similarly, the solid problem is solved using the interface Neumann data from the fluid

problem. Implementing this algorithm for the toy problem gives the following.

• Fluid Step

ρf
un+1 − un

δt
+∇pn+1 = 0 on Ωf
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∇ · un+1 = 0 on Ωf

un+1 =
dn − dn−1

δt
on Σ

• Solid Step

ρsϵ[
dn+1 − 2dn + dn−1

δt2
] + Ldn = p · nfs|Σ on Σ

3.2.1.2 Convergence criteria

To help us derive and understand the convergence criteria, we implement the algorithm for the

modified toy problem, yielding the following.

−∆pn+1 = 0 on Ωf

∂pn+1

∂nfs
= −ρf [

dn − 2dn−1 + dn−2

δt2
] on Σ

We can express the above set of equations in one interface equation using the added mass

operator MA.

ρsϵ[
dn+1 − 2dn + dn−1

δt2
] + ρfMA[

dn − 2dn−1 + dn−2

δt2
] + Ldn = 0 on Σ

For the added mass operator MA, we consider the following eigenvalue problem with zi being

the eigenvectors and µi being the associated eigenvalues.

MAzi = µizi

If MA has m independent eigenvalues and eigenvectors, then we can represent d as the following.

d =
m∑
i=1

dizi

We want to derive MAd in terms of di, zi and µi.

MAd = MA(
∑
i

dizi) =
∑
i

di(MAzi)

Using 3.2.2.2 to simplify 3.2.1.2, we get the following.

MAd =
∑
i

diµizi
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Simplifying 3.2.1.2 using 3.2.1.2 we get the following difference equation.

ρf ϵ

δt2
dn+1
i + [

ρfµi − 2ρsϵ

δt2
+ L]dni + [

ρfµi − 2ρsϵ

δt2
]dn−1

i +
ρfµi

δt2
dn−2
i = 0 (3.4)

We want to understand the stability of the difference equation. We propose an exponential

solution λn to be the trial solution for 3.4. After substituting λn and simplifying and homogenizing

the equation, we get the characteristic equation.

P (λ) =
ρf ϵ

δt2
λ3 + [

ρfµi − 2ρsϵ

δt2
+ L]λ2 + [

ρfµi − 2ρsϵ

δt2
]λ+

ρfµi

δt2
= 0 (3.5)

The made-up solution to the characteristic equation would be something like λ, λ2, λ3...λn. For

the difference equation to be stable, we would need to have an upper bound for λn. This is only

possible when |λ| < 1. We derive the stability condition for this algorithm from here.

Plotting the cubic polynomial 3.5, we get the following.

x

y

−1 0r

P (λ)

Figure 3.2: Characteristic equation plot

For the algorithm to be stable, we want the root |r| of the characteristic equation to be less than

one. We also have:

P (−1) = L+
4

δt2
(ρfµi − ρsϵ) (3.6)

From the plot, we can observe that we want the root to be in between -1 and 0. So for that to

happen, we want P (−1) to be negative. From 3.6, we can prove the condition for instability by

showing P (−1) > 0. We get the following condition.

ρfµmax

ρsϵ
> 1 Condition for instability (3.7)

From 3.7, we can make the following inferences.

• Instability depends on the density ratio.
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• Instability does not depend on the time step (δt).

• Instability occurs when the structure is thin and slender (large µmax). Refer [12].

3.2.2 Implicit Dirichlet-Neumann method

This is an iterative algorithm, unlike the explicit Dirichlet-Neumann method.

3.2.2.1 Algorithm

In this algorithm, for each iteration, a fluid problem is solved using the Dirichlet data from the

solid problem of the previous iteration, and then the solid problem is solved using the Neumann

fluid data from the same iteration. A relaxation parameter ω is introduced. This iteration is

done for each time step until the solution converges. Due to the implicit nature of this algorithm,

we always get an accurate solution if the solution converges. The downside of using this method

is the added computational cost involved as the solver has to run for multiple iterations.

Solving the toy problem for the (n+ 1)st timestep at the (k+ 1)st iteration, we get the following.

• Fluid Step

ρf
uk+1 − un

δt
+∇pn+1 = 0 on Ωf

∇ · uk+1 = 0 on Ωf

uk+1 =
dk − dn

δt
on Σ

• Solid Step

ρsϵ[
d̂k+1 − 2dn + dn−1

δt2
] + Ld̂k+1 = p on Σ

• Relaxation Step

dk+1 = ωd̂k+1 + (1− ω)dk

3.2.2.2 Convergence criteria

We implement this algorithm on the modified toy problem to help us develop convergence criteria

for this method.

−∆pk+1 = 0 on Ωf

∂pk+1

∂nfs
= −ρf [

dk − 2dn + dn−1

δt2
] on Σ



Chapter 3. Block Preconditioners for Fluid-Structure Interaction Problems 25

Reducing the above set of equations to the interface equation using the added mass operator

MA gives us the following.

ρsϵ[
d̂k+1 − 2dn + dn−1

δt2
] + ρfMA[

dk − 2dn + dn−1

δt2
] + Ld̂k+1 = 0 on Σ (3.8)

For the added mass operator MA, we consider the following eigenvalue problem with zi being

the eigenvectors and µi being the associated eigenvalues.

MAzi = µizi

If MA has m independent eigenvalues and eigenvectors, then we can represent d as the following.

d =

m∑
i=1

dizi

Similar to what we did in the implicit Dirichlet-Neumann method, we express 3.8 in terms of di,

zi and µi.

1

ω
[
ρsϵ

δt2
+ L]di(k+1) + [

ρfµi

δt2
− [

1− ω

ω
][
ρsϵ

δt2
+ L]]di(k) + [

ρsϵ+ ρfµi

δt2
][dn−1

i − 2dni ] = 0 (3.9)

Writing the characteristic homogenized equation of 3.9 gives the following.

1

ω
[
ρsϵ

δt2
+ L]λ+ [

ρfµi

δt2
− [

1− ω

ω
][
ρsϵ

δt2
+ L]] = 0

For the above characteristic equation to be stable, we need |λ| < 1 or the absolute value of the

root of the characteristic equation to be less than one. Using this information, the stability

criteria derived for this method are as follows.

|
(1− ω)(ρsϵ+ Lδt2)− ωρfµi

ρsϵ+ Lδt2
| < 1 (3.10)

As ω is a parameter we can control, we can define an optimum range of ω suitable for this

method.

0 < ω <
2(ρsϵ+ Lδt2)

ρsϵ+ ρfµmax + Lδt2
(3.11)

From 3.10 and 3.11, we can deduce the following inferences about the usage of the implicit

Dirichlet-Neumann method.

• For a thin/slender body, µmax is large, therefore ω range is small. Refer [12].

• If
ρf
ρs

is large, then ω would be small. This means that we would iterate slower towards the

solution leading to more number of iterations required.

• Does not converge all the time if relaxation is not used.
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• The convergence rate is dependent on the timestep size (δt).

3.2.2.3 Dirichlet-Neumann block preconditioner

We will now represent the Dirichlet-Neumann method applied to the toy problem in discrete

form. 
CII GI CIΓ 0

DI 0 DΓ 0

0 0 I 0

CΓI GΓ CΓΓ NΓΓ




uk+1
i

pk+1

uk+1
Γ

dk+1

 =


rf

rp

∂t(d)
k

rfΓ + rs

 (3.12)

The discrete version of the toy problem is given as follows.
CII GI CIΓ 0

DI 0 DΓ 0

0 0 I −∂t(I)

CΓI GΓ CΓΓ NΓΓ




ui

p

uΓ

d

 =


rf

rp

0

rfΓ + rs

 (3.13)

Now we try to develop a preconditioner that converts the original discrete toy problem 3.13 to

3.12.

PDN =


CII GI CIΓ 0

DI 0 DΓ 0

0 0 I 0

CΓI GΓ CΓΓ NΓΓ

 (3.14)

3.2.3 Implicit Robin-Robin method

We have observed that the convergence for the Dirichlet-Neumann method for scenarios where

there is a high added mass effect is poor. Therefore, to mitigate this, we introduce the family of

Robin-Robin methods where we change the transmission conditions to Robin conditions. This

has been explained in detail for an elliptic PDE problem in 2. Introducing the toy problem

modified with the Robin transmission conditions. Let us refer to this problem as the Robin-Robin

toy problem. αf and αs are introduced as the Robin-Robin parameters here.
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• Fluid domain

ρf
∂u

∂t
+∇p = 0 on Ωf

∇ · u = 0 on Ωf

u · nΓ = 0 on Γ1

p = 0 on Γ2 ∪ Γ3

• Solid domain and the interface

ρsϵd̈+ Ld+ αfu = p+ αf ḋ on Σ

ρsϵd̈+ Ld+ αsḋ = p+ αsu on Σ

The discrete form of the problem would be the following.
CII GI CIΓ 0

DI 0 DΓ 0

CΓI GΓ αfI + CΓΓ −αf ∗ ∂t(I) +NΓΓ

CΓI GΓ −αsI + CΓΓ αs ∗ ∂t(I) +NΓΓ




ui

p

uΓ

d

 =


rf

rp

rΓ + rs

rfΓ + rs

 (3.15)

A mapping Q is introduced mapping the toy problem to the Robin-Robin toy problem.

Q =


I 0 0 0

0 I 0 0

0 0 αfI I

0 0 −αsI I


3.2.3.1 Algorithm

In this algorithm, for each iteration, a fluid problem is solved using the Robin data from the

solid problem of the previous iteration, and then the solid problem is solved using the Robin

fluid data from the same iteration. A relaxation parameter ω is introduced. This iteration is

done for each time step until the solution converges. Solving the Robin-Robin toy problem for

the (n+ 1)st timestep at the (k + 1)st iteration, we get the following.

• Fluid Step

ρf
uk+1 − un

δt
+∇pn+1 = 0 on Ωf

∇ · uk+1 = 0 on Ωf

αfuk+1 + ρsϵ[
d̂k+1 − 2dn + dn−1

δt2
] + Ld̂k+1 = αf

dk − dn

δt
+ pk · nfs on Σ
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• Solid Step

αs
dk − dn

δt
+ ρsϵ[

d̂k+1 − 2dn + dn−1

δt2
] + Ld̂k+1 = αsuk+1 + pk · nfs on Σ

• Relaxation Step

dk+1 = ωd̂k+1 + (1− ω)dk

3.2.3.2 Robin-Robin block preconditioner

We will now represent the Robin-Robin method applied to the toy problem in discrete form.
CII GI CIΓ 0

DI 0 DΓ 0

CΓI GΓ αfI + CΓΓ 0

CΓI GΓ −αsI + CΓΓ αs ∗ ∂t(I) +NΓΓ




uk+1
i

pk+1

uk+1
Γ

dk+1

 =


rf

rp

rfΓ + rs + (αf ∗ ∂t(I) +NΓΓ)d
k

rfΓ + rs


(3.16)

Now we try to develop a preconditioner that converts the original toy problem 3.13 to 3.16.

PRR = Q−1 ∗


CII GI CIΓ 0

DI 0 DΓ 0

CΓI GΓ αfI + CΓΓ 0

CΓI GΓ −αsI + CΓΓ αs ∗ ∂t(I) +NΓΓ

 (3.17)

3.2.4 Implicit Robin-Neumann method

This method comes under the umbrella of the Robin-Robin methods discussed in the previous

section. Here we set αs = 0. We therefore will not discuss the problem formulation in detail for

this method. The Robin-Neumann problem is given as the following.

• Fluid domain

ρf
∂u

∂t
+∇p = 0 on Ωf

∇ · u = 0 on Ωf

u · nΓ = 0 on Γ1

p = 0 on Γ2 ∪ Γ3

• Solid domain and the interface

ρsϵd̈+ Ld+ αfu = p+ αf ḋ on Σ
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ρsϵd̈+ Ld = p on Σ

3.2.4.1 Algorithm

Applying the iterative algorithm on the Robin-Neumann toy problem gives the following.

• Fluid Step

ρf
uk+1 − un

δt
+∇pn+1 = 0 on Ωf

∇ · uk+1 = 0 on Ωf

αfuk+1 + ρsϵ[
d̂k+1 − 2dn + dn−1

δt2
] + Ld̂k+1 = αf

dk − dn

δt
+ pk on Σ

• Solid Step

ρsϵ[
d̂k+1 − 2dn + dn−1

δt2
] + Ld̂k+1 = pk on Σ

• Relaxation Step

dk+1 = ωd̂k+1 + (1− ω)dk

3.2.4.2 Convergence criteria

To get the optimum convergence, we can vary the Robin parameter αf . Referring to [5], it is

shown that if we do backward differencing (BDF) for discretizing the temporal equation, we get

the following. Using the relation 3.2 in 3.1 gives us the following.

ρsϵ
∂u

∂t
+ Ld = p (3.18)

Temporally discretizing 3.18 and upon further simplification, gives the following.

(
ρsϵ

∆t
+ L∆t)un+1 + pn+1 = (

ρsϵ

∆t2
− L∆t)dn − ρsϵ

∆t2
dn−1 (3.19)

From 3.19, we can estimate the optimal Robin parameter as follows.

αf =
ρsϵ

∆t
+ L∆t

We can use the αf value derived and apply the Robin-Neumann algorithm on the modified toy

problem. Reducing this problem to an interface equation using the added mass operator MA

gives us the following result.

(
L∆t2 + ρsϵ

ρf
M−1

A + I)pk+1 = Ldn (3.20)
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Looking at 3.20, we can observe that this is an explicit update equation for the pressure term.

We can say that the Robin-Neumann algorithm does not develop any instabilities due to the

algorithm, therefore making this algorithm immune to the added mass effects. It is also important

to note that this is only true for the case of simulating thin solid FSI problems. More results

on the optimum Robin parameter for other time discretizations and convergence results are

discussed in 4.

For other more complex time discretizations, we introduce a new parameter γ to estimate the

optimal Robin parameter. γ is selected experimentally through parametric analysis.

αf = γ(
ρsϵ

∆t
+ L∆t) (3.21)

3.2.4.3 Robin-Neumann block preconditioner

We will now represent the Robin-Neumann method applied to the toy problem in discrete form.
CII GI CIΓ 0

DI 0 DΓ 0

CΓI GΓ αfI + CΓΓ 0

CΓI GΓ CΓΓ NΓΓ




uk+1
i

pk+1

uk+1
Γ

dk+1

 =


rf

rp

rfΓ + rs + (αf ∗ ∂t(I) +NΓΓ)d
k

rfΓ + rs

 (3.22)

Now we try to develop a preconditioner that converts the original toy problem 3.13 to 3.22.

PRN = Q−1 ∗


CII GI CIΓ 0

DI 0 DΓ 0

CΓI GΓ αfI + CΓΓ 0

CΓI GΓ CΓΓ NΓΓ



3.3 Parallel preconditioners for FSI problems

In this section, we look at the parallel implementation of the block preconditioners. One of the

first challenges that we observe is that we cannot use exact solvers for solving the inner blocks in

the block preconditioner, as this is computationally very inefficient when solving large problems

in parallel. We use iterative solvers based on Krylov solvers to solve these inner blocks. The

result of using iterative solvers in the preconditioner means that the preconditioner changes

every iteration, as the solvers do not produce exact solutions with machine precision. Therefore,

we cannot use GMRES as the outer solver for solving the preconditioned monolithic system, as

the algorithm is only designed for constant preconditioning. We therefore use the FGMRES

algorithm as the outer solver, as this is designed for variable preconditioning. Refer [39]. The
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FGMRES algorithm is designed to be used with right preconditioners; we therefore have to

reformulate the block preconditioners and the FSI problem.

3.3.1 Parallel block FSI preconditioners

In this section, we will reformulate the discrete FSI problem and the associated block precondi-

tioners mentioned in 3.2. The discrete problem mentioned in 3.13 would be the following.
NΓΓ CΓI CΓΓ GΓ

0 CII CIΓ GI

−∂t(I) 0 I 0

0 DI DΓ 0




d

ui

uΓ

p

 =


rfΓ + rs

rf

0

rp


The associated Robin-Robin problem as mentioned in 3.15 would be the following .

αs ∗ ∂t(I) +NΓΓ CΓI −αsI + CΓΓ GΓ

0 CII CIΓ GI

−αf ∗ ∂t(I) +NΓΓ CΓI αfI + CΓΓ GΓ

0 DI DΓ 0




d

ui

uΓ

p

 =


rfΓ + rs

rf

rfΓ + rs

rp


The new mapping matrix Q would be the following.

Q =


I 0 −αsI 0

0 I 0 0

I 0 αfI 0

0 0 0 I


The Dirichlet-Neumann Preconditioner 3.14 written as a right-preconditioner would be the

following.

PDNparallel
=


NΓΓ CΓI CΓΓ GΓ

0 CII CIΓ GI

0 0 I 0

0 DI DΓ 0


The Robin-Robin Preconditioner 3.17 written as a right preconditioner would be the following.

PRRparallel
=


αs ∗ ∂t(I) +NΓΓ CΓI −αsI + CΓΓ GΓ

0 CII CIΓ GI

0 CΓI αfI + CΓΓ GΓ

0 DI DΓ 0

 ∗Q−1
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The general structure of the FSI block preconditioner is as follows.

P =

[
Solid Block Coupling Terms

0 Fluid Block

]

While applying the block preconditioner, we would need to compute the inverses of the Solid

Block and Fluid Block. For these inner solves, we employ the preconditioned GMRES matrix

solver with the one-level additive Schwarz preconditioner. We can apply the one-level additive

Schwarz preconditioner directly on the monolithic fluid block. Refer [29]. However, it is noted

that as we increase the number of subdomains, the one-level additive Schwarz preconditioner

does not scale well. To solve this issue, a coarse problem is added while constructing the

preconditioner, as shown in [29] and [26]. It was seen that, specific to our use-case and the

problem size, the added computational cost of adding the coarse space outweighed the benefit

of having fewer iterations. Therefore, for this thesis, we stick to using the one-level additive

Schwarz preconditioner while solving for the fluid and solid block inside the block preconditioner.

3.4 The floating structure problem

In this section, we will introduce the floating structure problem. For this thesis, we are looking

at simulating floating pre-tensioned elastic membranes [1].

3.4.1 Problem definition

We consider the following computational domain similar to the one we used for the toy problem.

We model the fluid flow using the Euler equation and neglect the convective term (non-linear

terms). While modeling the elastic membrane, we neglect the effect from the bending stiffness

(fourth order spatial derivative term).

Term Meaning Term Meaning

ΩF Fluid domain Σ Floating membrane domain

u Fluid velocity p Fluid pressure

n Normal vector towards the interface d Solid displacement

ρf Fluid density ρs Solid density

hs Solid thickness T Membrane pre-tension

g Acceleration due to gravity H Total depth from surface to bed

Table 3.2: Definition of terms relating to the floating structure problem

The equations governing this phenomenon are as follows.
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• Fluid domain

ρf
∂u

∂t
+∇p = ρfg on Ωf

∇ · u = 0 on Ωf

u · nΓ = 0 on Γ1

p = pbc on Γ2 ∪ Γ3

• Solid domain and the interface

ρshsd̈−∇ · (T∇d) = p on Σ

ḋ = u on Σ

Similar finite element discretization is done for this problem as we did for the toy problem. Refer

to table 3.1 for the terms relating to the finite element discretization. The weak form for the

given set of equations is the following.∫
(ρf

∂u

∂t
· v)Ωf −

∫
(p(∇ · v))Ωf =

∫
((ρfg)v)dΩf −

∫
(pΓ2v · n)dΓ2 −

∫
(pΓ3v · n)dΓ3

∫
((∇ · u)q)dΩf∫

(ρshs
∂2d

∂t2
s+ T∇d · ∇s)dΣ =

∫
psdΣ

The discrete problem derived is similar to the discrete problem mentioned for the toy problem.

Therefore, we use the same preconditioners developed for the toy problem in the previous

section.



Chapter 4

Implementation, Results and

Discussion

All the implementations other than the section on overlapping methods have been implemented

using the Gridap package [46] written in Julia. For the parallel implementation, we use the

package Gridap Distributed [4] and the library Trilinos [41] for implementing the inner solves.

4.1 Non-overlapping domain-decomposition methods

4.1.1 Implementation of the problem in Gridap

This code was implemented using Gridap [46]. Block preconditioners and solvers were imple-

mented using the GridapSolvers package [32]. The problem introduced in 2.3.1 is implemented.

Preconditioned Richardson iteration is implemented. A direct matrix solver based on LU

Decomposition is used to solve the blocks of the preconditioner. The domain is discretized

into 20 elements across the x-axis and 20 elements across the y-axis. The interface is moved

along the x-axis and its position is measured from the origin (example : interface = 1 implies

interface is located one unit from the origin along the x-axis). The parameters used for numerical

experiments are shown below.

Term Value Term Value

b 5 h 5

a1 Mentioned for each case a2 Mentioned for each case

f1 1 f2 1

Absolute tolerance 1e-6

Table 4.1: Parameters used in the coupled elliptic PDE problem.

34
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4.1.2 Results and inference

We look at how the relaxation parameter affects the convergence for these methods. We also

study how the position of the interface affects convergence. For the Robin-Robin methods,

we look at how varying the Robin parameters affects the convergence. Detailed results are

mentioned in the appendix A.1.

From all the methods that we have studied, it is evident that each method has its own set of

unique characteristics. We keep the Dirichlet-Neumann method as the benchmark to compare the

other methods. We can observe that the Dirichlet-Robin methods tend to move the convergence

plot to the right. This made the method better suited to the problems where a1 > a2 compared

to the Dirichlet-Neumann method. For the Robin-Neumann method, the behavior largely

remained similar to the Dirichlet-Neumann method for this particular use case. The convergence

of the Robin-Neumann method is inferior to the Dirichlet-Neumann method for this particular

problem. The Robin-Robin method produced the most consistent results for all cases. When the

robin parameter α ≥ 0.5, the method converged to the solution in about 10 iterations with no

relaxation for all cases. The table below summarizes all the results.

Diffusion Contrast a1 = a2 a1 = a2 a1 > a2 a1 > a2 a1 < a2 a1 < a2

Interface Position Center Asymmetric Center Asymmetric Center Asymmetric

Dirichlet-Neumann Method Best Best Bad Bad Good Good

Dirichlet-Robin Method Good Good Good Good Good Good

Robin-Neumann Method Good Good Bad Bad Good Good

Robin-Robin Method Good Good Best Best Best Best

Table 4.2: Summary for Non-Overlapping methods applied on the coupled elliptic PDE

4.2 Overlapping domain-decomposition methods

In this section, we implement basic overlapping domain-decomposition techniques in Julia and

MATLAB on a one-dimensional Poisson problem described in 2.4.1.

4.2.1 Implementation of the problem

We have implemented these methods in Julia and MATLAB. The length of the 1-D domain is

1 unit and is divided into 1000 elements. The forcing function (f(x)) is kept to be a constant

function equal to one. A preconditioned conjugate gradient solver is used to solve with the solver

tolerance set to 1e-6. We kept a constant overlap of two cells while forming the overlapping

subdomains.
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4.2.2 One-level additive Schwarz

We plot the number of iterations that were required against the number of subdomains used.

From plot 4.1, we observe that as we increase the number of subdomains for a problem, the

number of iterations tends to proportionally increase without any upper bound. If we were to

use a large number of subdomains to solve the problem, then we would reach a point where

the computational cost and time would be so high that it would become unfeasible to use this

method. Therefore, we say that this method is not scalable.

Figure 4.1: One-level Schwarz Results

4.2.3 Two-level additive Schwarz

To solve the problem of scalability that occurred in the one-level additive Schwarz method, we

introduce this method. We plot the number of iterations that were required against the number

of subdomains used.
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Figure 4.2: Two-level Schwarz Results

From the above plot, we can observe that the growth in the number of iterations required to

solve the problem does not rapidly increase while increasing the number of subdomains for the

two-level method compared to the one-level problem. This makes this method better suited to

solve problems when a large number of subdomains are required.

4.3 Block-preconditioners for the toy FSI problem

The problem outlined in 3.1 is implemented in Gridap. The matrix for the uncoupled system is

first generated in Gridap, and then the system is coupled through matrix modifications that are

done in the numerical setup of the solver. The discrete equations of the uncoupled system are

shown below. 
CII GI CIΓ 0

DI 0 DΓ 0

CΓI GΓ CΓΓ 0

0 0 0 NΓΓ




ui

p

uΓ

d

 =


rfI

rfp

rfΓ

rs


A new function is introduced that gives us an ordered pair of interface degrees of freedom for

the fluid velocity and solid displacement. A unique ’dface’ value is generated in Gridap for

each geometric identity (example - vertex, edge, face) in the mesh. Using this generated unique

geometric id, the required degrees of freedom are extracted and arranged. Refer to appendix B.1

for the function implementation. A solver wrapper is created that uses this data and performs

the required matrix modifications before solving the matrix. This process is reported in detail in

appendix B.2.
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The below table contains the values specific to the toy problem that are implemented in this

thesis.

Term Value Term Value

Length of the domain 6 cm Radius of the domain 1 cm

E 0.75e-6 dynes/cm2 ϵ 0.1 cm

ρf 1 g/cm3 ρs variable g/cm3

Numer of elements along x axis 40 Time step 1e-3 seconds

Numer of elements along y axis 5

Table 4.3: Toy FSI problem implementation

To initiate a pressure wave, an overpressure of 2e+4 dynes/cm2 is applied for the first 0.005

seconds on the inlet boundary (Γ1). The domain is divided into 40 elements along the x -axis

and 5 elements along the y-axis.

4.3.1 Results

To understand the problem we are simulating, we show a pressure contour plot along with the

solid displacement at the time of 0.3 seconds.

Figure 4.3: Pressure Contour plot along with solid displacement at time 0.3 seconds

4.3.1.1 Dirichlet-Neumann preconditioner

We vary the solid density to help us understand how it impacts convergence. By varying the

solid density, we get to understand how the added mass effect affects convergence, as the solid

density is inversely proportional to the added mass effect. The below plot shows us how the

relaxation parameter affects the iteration count.
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Figure 4.4: Numerical experiment-1 — Dirichlet-Neumann preconditioner

From the above plot, we observe that the range of relaxation parameters over which the solution

converges reduces as the solid density is reduced. As the solid density increases, the number of

iterations required to converge for the system with no relaxation reduces. This result corroborates

with the theoretical convergence results we derived in the previous chapter. The glaring limitation

of this method is that it fails to converge when the added mass effect is high (solid density is

low).

4.3.1.2 Robin-Robin preconditioner

We try to understand how this method performs when compared to the Dirichlet-Neumann

method. The below plot shows us how the relaxation parameter affects the iteration count.

Figure 4.5: Numerical experiment-1 — Robin-Robin preconditioner
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From the above plot, we can observe that the Robin-Robin method appears to be more immune

to the added mass effects when compared to the Dirichlet-Neumann method. Although the

convergence of the Dirichlet-Neumann method when the added mass effect is low appears to be

better than the Robin-Robin method. It is also evident that no relaxation is required for the

Robin-Robin method for optimal convergence.

4.3.1.3 Robin-Neumann preconditioner

We try to understand how this method performs when compared to the Dirichlet-Neumann

method. The below plot shows us how the relaxation parameter affects the iteration count.

Figure 4.6: Numerical experiment-1 — Robin-Robin preconditioner

From the above plot, it is evident that the Robin-Neumann method is immune to the added mass

effects, and the convergence properties of the Robin-Neumann method appear to be consistently

better than the Dirichlet-Neumann method.

4.3.2 Inference

We summarize the results into a table for the purpose of easy understanding.

Method Low added mass effect High added mass effect

Dirichlet-Neumann method Good Poor

Robin-Robin method Poor Good

Robin-Neumann method Best Best

Table 4.4: Toy FSI serial results summary
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4.4 Parallel block preconditioners for the toy problem

4.4.1 FSI parallel implementation in Gridap

The finite element parallel assembly is done using the GridapDistributed package. The finite

element matrices are assembled locally on each separate MPI process. The matrix modifications

to couple the fluid and solid systems take place locally on each process on the local matrix without

any communication with other processes. The Julia package PartitionedArrays.jl provides the

distributed linear algebra framework within GridapDistributed [4].

While storing data for the distributed matrices, each local process stores the local matrix along

with the associated row map and column map. Similarly, for distributed vectors, each local

process stores the local vector and its associated row map. A row map is a vector that maps the

local indices of the local matrix stored in the process to the global matrix.

A ghost node is a position on a local matrix in a process that is actually owned by another

process. These duplicate data entries are there to minimize communication among processes

during the matrix assembly and certain matrix operations. These ghost nodes generally store

the data of the adjacent cells just outside the local subdomain.

Generally, there is a domain map and a range map. In the domain map, all the possible ghost

cells are included in each mpi process. In the range map, there are no ghost cells included or all

the local nodes are owned by the local process.

As we implemented the matrix modifications for the serial problem, a similar process is followed

in the parallel problem. In the parallel problem, the matrix modifications are performed on the

local matrices independently using the local DOF IDs extracted. The additional complexity

involved here is to build efficient maps that map a local index defined on a domain map to a row

map or column map. The DOF IDs extracted give the local DOF IDs that are mapped to the

domain map of the FE Space. Then we have to convert these DOF IDs to local row DOF IDs

that are mapped to row maps and local column DOF IDs that are mapped to column maps.

4.4.2 Gridap-Trilinos interface

During this thesis project, a solver interface between Gridap and Trilinos is developed. Trilinos,

being a library written in C++ and Gridap being written in Julia, we used the library CxxWrap.jl

to run the C++ binaries from Julia.

There are three parts to the interface. The first is assembling the required linear system in

Trilinos using the appropriate data structures. The second part is solving the linear system
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using the packages present in the Trilinos library. The third is the transfer of the solution from

Trilinos to Gridap.

4.4.2.1 Matrix assembly

The distributed matrices in GridapDistributed are stored as a psparse matrix, and the distributed

vector is stored as a pvector. These data types are implemented in the PartitionedArrays.jl

package. For the psparse matrix, a local sparse matrix is stored in a CSC (Compressed Sparse

Column) format along with its associated row map and column map. For the pvector, a local

vector along with its associated row map is stored.

In Trilinos, we use the Tpetra back end to store the distributed linear system. Here, the matrix

is stored as a Tpetra CRS (Compressed Row Sparse) matrix, and the vector is stored as a Tpetra

vector. While assembling the system, it is important for the row map to be a one-to-one map.

This means no ghost nodes must be there for the row map.

From Gridap, all the required data such as these maps and the local components of the vectors

and matrices are passed as pointers to the C++ executable. Using this data, we build the

Trilinos objects of the linear system.

4.4.2.2 Solver implementation

For this project, we are looking to implement preconditioners from the FROSch framework [27]

and implement iterative matrix solvers from the Belos package [8]. FROSch uses the Xpetra

backend [42] to store the distributed linear system. The Xpetra backend is a wrapper that

allows backward compatibility with the older Epetra backend along with the newer Tpetra

backend. We therefore convert the Tpetra objects created to Xpetra objects. For the scope

of this thesis, we limit ourselves to using the one-level additive Schwarz preconditioner. Using

these Xpetra objects, the FROSch preconditioner and Belos solver objects are created. These

objects can be configured through an input XML file. We therefore maintain some generality for

this implementation. A sample XML file is provided in the appendix B.4.

4.4.2.3 Solution transfer

The solution is first stored as a Tpetra vector. Along with this Tpetra vector, a corresponding

Tpetra map is created. Pointers to an initialized solution distributed vector from Gridap are

passed to the interface script. Using the information stored in the Tpetra map and the Tpetra

vector, the Gridap solution vector is updated. All these Trilinos objects created are destroyed

once the solve operation is completed as all of them are present within a local scope.
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Julia wrappers for initializing and finalizing Kokkos [44] are created. Using these functions,

Kokkos is initialized before any implementing Trilinos solve operation from the Julia environment.

After executing all the Trilinos solve operations, Kokkos is finalized from the Julia environment.

4.4.3 Results

In this section, we will discuss convergence and performance results of the parallel block

preconditioner implementation. We first present results showcasing the robustness of the

proposed block preconditioners, and then we proceed to showcase weak and strong scaling of the

system. All these tests have been conducted on the DelftBlue super computer [20]. We consider

the toy problem with the same parameters as mentioned in section 4.3. For all our results on the

matrix solver, we showcase the results for the second timestep. Since the inner solves that are

used in the preconditioner are iterative solvers, it is to be noted that the convergence tolerance

set for these solvers is 1e-8. The outer solver’s relative tolerance is set as 1e-6 and its absolute

tolerance is set to be 1e-8.

For the first numerical experiment, we try to understand the convergence of the outer solver

while applying the Dirichlet-Neumann preconditioner compared with the Robin-Neumann

preconditioner. As mentioned in 3.21, we consider the cases of the Robin-Neumann preconditioner

with γ being 0.1, 1, and 10. We repeat this experiment by varying the solid density to understand

how this affects convergence.

Figure 4.7: Convergence plots for different FSI block preconditioners and solid densities
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From plot 4.7, the Robin-Neumann preconditioner with γ being 0.1 exhibits the best convergence

for all solid densities. This result shows us that choosing the Robin parameter is very important

to achieve optimal convergence. Through this experiment, we have identified that the optimal

value for γ is 0.1 for the given FSI toy problem. For further experiments in this section, we will

be using this optimal Robin parameter while defining the Robin-Neumann preconditioner.

The number of outer iterations that are required for the Dirichlet-Neumann preconditioner

increases from 4 to 17 as we reduce the solid density. Similarly, the number of outer iterations

that are required for the optimal Robin-Neumann preconditioner only increases from 3 to 6. This

result clearly demonstrates the superior convergence that is exhibited by the Robin-Neumann

preconditioner when compared to the Dirichlet-Neumann preconditioner, especially when the

added mass effect is high.

For the next numerical experiment, we demonstrate the convergence of the Robin Neumann

preconditioner when we increase the length of the solid domain. It is to be noted that as we

increase the length of the solid domain, the added mass effects increase. The solid density is

assumed to be 1e-4 g/cm3 for this experiment.

L = 6 cm L = 50 cm L = 100 cm L = 1000 cm

Dirichlet-Neumann 17 38 52 157

Robin-Neumann 6 6 6 6

Table 4.5: Number of outer iterations for FSI block preconditioners

From table 4.5, it is very evident that the number of iterations to convergence for the Dirichlet-

Neumann preconditioner deteriorates significantly as the length of the domain is increased. On

the other hand, we notice that the number of iterations to convergence for the Robin-Neumann

preconditioner remains constant as the length of the domain is increased.

The next numerical experiments move on to assess the parallel scalability of the system. For

these tests, we limit ourselves to testing only the Robin-Neumann preconditioner.

Strong scaling [2] is a test where the problem size remains fixed and we increase the number of

MPI ranks required to simulate the problem. A system is said to demonstrate strong scaling

if the time taken to solve the problem proportionately decreases as the MPI processes used

to simulate increases. The next numerical experiment is designed to test the strong scaling of

the proposed system. For this experiment, we set the domain length to be 4000 cm, with each

centimeter containing seven elements. The domain height is set to be 5 cm. The solid density is

taken to be 1e-4 g/cm3.
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Figure 4.8: Strong Scaling for the proposed parallel block preconditioner system

From plot 4.8, we observe that the proposed system and its implementation demonstrate behavior

close to strong scaling.

From the above problem, we also try to analyze the inner matrix solvers that are used to solve

the fluid and solid blocks within the preconditioner. A one-level Schwarz preconditioner is

implemented using FROSch along with a GMRES solver implemented using the Belos package.

The local solve operation on each subdomain is carried out by the UMFPACK direct matrix

solver [18] implemented using the Amesos 2 package. The overlap that is used to build the

overlapping subdomains is set to one layer. The convergence tolerance of this inner solver is set

to 1e-8.

Detailed convergence analysis for the one-level Schwarz preconditioner, when used within the

block preconditioner, has not been done due to time constraints. This analysis is important to

ascertain whether a two-level Schwarz preconditioner is needed for the problem or not. There

are both benefits and drawbacks of using the two-level preconditioner. The benefit is that we

achieve superior convergence with an upper bound to the condition number of the system. The

drawback is that it takes computational resources to construct the coarse space. For a specific

problem, we would have these benefits and drawbacks to decide what to use. For this thesis

project, we have stuck to using a one-level Schwarz preconditioner.

Weak scaling [25] is a test, where for each process a similar size problem is given. So as we

increase the number of MPI processes used to simulate, the problem size proportionally increases.

A problem demonstrates weak scaling if the time taken to solve remains constant as the number

of MPI processes is increased. For the next numerical experiment, we try to demonstrate the

weak scaling behavior of the proposed system. Here we take the length of the subdomain to be

a hundred times the number of MPI processes used to simulate the problem.
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Figure 4.9: Weak Scaling for the proposed parallel block preconditioner system

From plot 4.9, we observe that the proposed system and its implementation demonstrate behavior

close to weak scaling.

4.5 Floating structure problem

In this section, we demonstrate the simulation of two test cases of the floating structure problem.

In the first test case, we introduce a non-reflecting boundary condition at one end to damp

the incoming wave to prevent reflections. For the second case, we introduce periodic boundary

conditions for simulating the response of an infinite floating membrane. We refer to section 3.4.1

for the problem.

4.5.1 Test case - 1

In this test case, we simulate a floating membrane object by forcing a wave at the inlet boundary

and introducing a non-reflective boundary condition at the outlet boundary. Refer to table 4.6

for the terms used in this simulation. The following forcing Dirichlet condition on the wave

equation for the solid displacement is imposed at the inlet.

d = 0.01sin(ωt)



Chapter 4. Implementation, Results and Discussion 47

Term Value Term Value

ρs 100 kg/m3 ρf 1000 kg/m3

hs 0.01 m H 1.1 m

T 0.9ρfg 1/m2 kλ (wave number) 10 rad/m

Number of elements along x axis 219 Time step 0.01 s

Number of elements along y axis 77 g 9.81 m/s2

L 31.4 m ω sqrt(gkλtanh(kλH))

Table 4.6: Values used to simulate the floating structure problem (Test Case-1)

Free slip boundary condition is applied on the bed for the velocity. No boundary condition is

imposed on the pressure field. A non-reflective boundary condition is imposed on the outlet

boundary. The dynamic pressure, velocity, and solid displacement are damped to zero using a

damping function.

Let us say that we will introduce this damping from a length Ld which is set to be 15.7 m. Then

we introduce a relation f = x−Ld
Lf−Ld when x > Ld. For all other regions, this variable is set to

zero. Now we introduce the damping function as the following. We have adapted this damping

function from [47].

damp(x) = (1− c1f
2)(

1− exp (c2f
2)

1− exp c2
)

Figure 4.10: Pressure Contour plot along with solid displacement at time 3.4 seconds

Figure 4.11: Pressure Contour plot along with solid displacement at time 5.8 seconds
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Figure 4.12: Pressure Contour plot along with solid displacement at time 10.0 seconds

4.5.2 Test case - 2

In this test case, we implement periodic boundary conditions to simulate an infinite floating

membrane. The methodology of implementing this problem has been adapted from [15].

Term Value Term Meaning

ρs 100 kg/m3 ρf 1000 kg/m3

hs 0.01 m H 1.1 m

Number of elements along x axis 219 kλ (wave number) 1 rad/m

Number of elements along y axis 77 Time step 0.01 s

L 10π m g 9.81 m/s2

ω sqrt(gkλtanh(kλH)) η0 0.01

Table 4.7: Values used to simulate the floating structure problem (Test Case-2)

A traveling wave solution for free surface flow in terms of the fluid potential is given as the

following relation. This relation is prescribed using the linear Airy’s wave theory.

ϕ ((x, y) , t) = −η0ω

kλ

cosh (kλy)

sinh (kλH)
sin (kλx− ωt)

Similarly, the following relation gives us the solid displacement solution (wave equation) on the

membrane.

d ((x) , t) = η0 cos (kλx− ωt)

Using the fluid potential relation, we can formulate relations for the fluid velocity and pressure.

These fields are used as initial boundary conditions for this problem. It is also important to

note that the length of the domain be an integral multiple of the wavelength of the wave. Using

these relations, we find a relation to the pre-tension parameter in the membrane equation.

T =
ω2

k2λ

(
ρf

kλ tanh(kλH)
+ ρshs

)
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Free slip boundary condition on the fluid velocity is applied on the bed. The fluid velocity

relations derived earlier are applied on both the inlet and outlet boundaries as Dirichlet boundary

conditions. The solid displacement relation is applied as a Dirichlet boundary condition on the

two ends of the domain.

Figure 4.13: Pressure Contour plot along with solid displacement at time 0 seconds

Figure 4.14: Pressure Contour plot along with solid displacement at time 1.1 seconds

Figure 4.15: Pressure Contour plot along with solid displacement at time 2.2 seconds
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Conclusion

This thesis addresses the challenge of efficiently simulating problems that are similar to simu-

lating very large floating structures on large parallel computing hardware. To achieve this, we

develop parallel preconditioners based on overlapping and non-overlapping domain decomposition

methods.

In chapter 2, we introduce these domain decomposition methods and their application to simple

elliptic PDE problems. Block preconditioners are developed using the concepts of non-overlapping

domain decomposition methods. We discuss the convergence of these block preconditioners

when used with the Richardson iteration as this scheme is similar to the continuous algorithm

behind the non-overlapping methods. Overlapping methods such as the one-level Schwarz and

the two-level Schwarz based on the Lagrangian coarse space are discussed.

In chapter 3, we introduce the FSI problems and develop preconditioners for them. Based on

the concept of non-overlapping methods, we investigate various coupling schemes that couple

the fluid and solid domains for this coupled problem. We investigate the added-mass effect and

how this impacts the convergence while solving. We then present various block preconditioners

based on these coupling strategies. It is seen that the Robin-Neumann preconditioner is not

affected by the added-mass effect, while the other preconditioners, such as the Dirichlet-Neumann

preconditioner, are adversely affected by the added mass effect.

In chapter 4, we discuss how we implement the methods discussed in the previous chapters

and the associated results. We first show implementations and results of the DD methods

implemented for the simple elliptic problems discussed in chapter 2. We then proceed to show

our implementation for the FSI coupling through matrix modifications in Gridap. To achieve

this, we introduce a new function that provides the DOF IDs of all the nodes present on the

interface. We also introduce the methodology used to impose the interface conditions while

coupling the system via matrix modifications. This is introduced as a solver wrapper in Gridap.

50
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The proposed FSI block preconditioner is implemented on a toy FSI problem to understand

its convergence properties. We first implement these block preconditioners on a Richardson

iteration matrix solver as this is similar to the continuous algorithm.

We then move on to the parallel implementation of these block preconditioners. To solve the

inner blocks in these block preconditioners, we use a Krylov iterative solver with a one-level

Schwarz preconditioner. These inner solves are implemented using the Trilinos library. To

achieve this, we implement a Gridap-Trilinos interface and a solver wrapper through which we

can solve linear systems in Gridap using Trilinos. We discuss this implementation in chapter

4. We also discuss the modifications required to implement the FSI coupling through matrix

modification for the parallel case. Krylov solvers are implemented as outer solvers.

Using this developed preconditioning system, we first try to understand how its convergence is

affected when we change certain parameters in the Toy FSI problem such as the solid density or

the domain length. These results clearly show us that the preconditioner system based on the

Robin-Neumann method offers the best convergence properties for this problem. We successfully

demonstrated the strong and weak scaling behavior of the system and its implementation.

We finally showcase a floating structure-based problem using the implementations we have

developed. Through this thesis, we have introduced efficient preconditioning systems through

which we can simulate large problems similar to the floating structure problem.

Future research can explore developing similar preconditioners for more complex floating structure

problems involving nonlinearities as we have restricted ourselves to linear problems. This thesis

project was also limited to a conformal fluid-solid grid. Coupling implementations for non-

conformal grids can be implemented to increase the generality of the implementation in Gridap.



Bibliography

[1] Shagun Agarwal, Oriol Colomés, and Andrei V. Metrikine. “Dynamic analysis of viscoelastic

floating membranes using monolithic Finite Element method”. In: Journal of Fluids and

Structures 129 (July 2024), p. 104167. doi: 10.1016/j.jfluidstructs.2024.104167.

url: https://doi.org/10.1016/j.jfluidstructs.2024.104167.

[2] Gene M. Amdahl. “Validity of the Single Processor Approach to Achieving Large Scale

Computing Capabilities, Reprinted from the AFIPS Conference Proceedings, Vol. 30

(Atlantic City, N.J., Apr. 18–20), AFIPS Press, Reston, Va., 1967, pp. 483–485, when Dr.

Amdahl was at International Business Machines Corporation, Sunnyvale, California”. In:

IEEE Solid-State Circuits Society Newsletter 12.3 (2007), pp. 19–20. doi: 10.1109/N-

SSC.2007.4785615.
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Appendix

A Supplementary results

A.1 Non-overlapping domain-decomposition methods

A.1.1 Dirichlet-Neumann preconditioner

In this section, we discuss the convergence results for the problem when we apply the Dirichlet-

Neumann preconditioner.

For the first experiment, we vary the interface position, keeping all other parameters constant.

Here, the diffusion coefficients (a1 and a2) are kept to be one. The below plot shows us how the

relaxation parameter affects the iteration count.

Figure 1: Numerical Experiment-1 — Dirichlet-Neumann iteration — Coupled Poisson Problem

We can observe that the plot moves to the left of 0.5 if the interface is moved to the left of center,

and the plot moves to the right if the interface is moved to the right of the center. Also, we can
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observe that if the interface is not placed symmetrically, then the range of relaxation parameters

where the solution converges decreases proportionally.

For the second numerical experiment conducted on the Dirichlet-Neumann method, we vary the

diffusion coefficients (a1 and a2) keeping the interface at the center. The below plot shows us

how the relaxation parameter affects the iteration count.

Figure 2: Numerical Experiment-2 — Dirichlet Neumann iteration — Coupled Poisson Problem

In section 2.3.2.2, we have derived the optimum relaxation parameter that is possible if the

interface is kept at the center. The above plot validates these findings. We can observe that the

range of relaxation parameters that converges to the solution drastically reduces as a1 >> a2.

Another observation is that, if a2 > a1, then the solution converges even if we have no relax-

ation. We can deduce that the Dirichlet-Neumann method’s convergence is very sensitive to the

relaxation parameter chosen.

For the third numerical experiment conducted on the Dirichlet-Neumann method, we vary

the interface position for two cases where the diffusion coefficients are kept different in each

subdomain. The below plot shows us how the relaxation parameter affects the iteration count.

From the plot 3 shown below, we can observe that the Dirichlet-Neumann method does not do

very well when a1 > a2 as the choice of relaxation parameters necessary for convergence reduces.

We can also observe that the plot moves as we move the interface, but the impact of moving
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the interface on convergence is significantly less than changing the diffusion coefficients of the

problem.

Figure 3: Numerical Experiment-3 — Dirichlet Neumann iteration — Coupled Poisson Problem

A.1.2 Robin-Neumann preconditioner

In this section, we discuss the convergence results for the problem when we apply the Robin-

Neumann preconditioner.

For the first experiment, we try to compare how the Robin-Neumann preconditioner differs from

the Dirichlet-Neumann preconditioner for the standard problem. Here, the interface is kept at
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the center and the diffusion coefficients are kept to be one. The below plot shows us how the

relaxation parameter affects the iteration count.

Figure 4: Numerical Experiment-1 —Robin-Neumann iteration — Coupled Poisson Problem

We can observe that the convergence plot largely remains similar to the Dirichlet-Neumann

preconditioner when αf is greater than one. It can also be observed that the convergence of all

Robin-Neumann cases is worse than the Dirichlet-Neumann case (αf = inf).

For the second numerical experiment conducted on the Robin-Neumann method, we keep the

diffusion constants to be one and vary the interface position to understand how that impacts

the preconditioner. The below plot shows us how the relaxation parameter affects the iteration

count.
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Figure 5: Numerical Experiment-2 — Robin-Neumann iteration — Coupled Poisson Problem

We observe that the convergence plot largely remains similar to the Dirichlet-Neumann method.

We can therefore say that this method is not superior to the Dirichlet-Neumann method when

the diffusion coefficients of the subdomains are the same.

For the third numerical experiment conducted on the Robin-Neumann method, we keep the

interface in the center and we vary the diffusion coefficients to understand how that affects the

convergence criteria of the Robin-Neumann method. The below plot shows us how the relaxation

parameter affects the iteration count.
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Figure 6: Numerical Experiment-3 — Robin-Neumann iteration — Coupled Poisson Problem

We can observe that when a1 > a2, then it is very clearly evident that the Robin-Neumann

method significantly becomes worse than the Dirichlet-Neumann method as αf is reduced. When

a2 > a1, then we can observe that the convergence properties of these two methods remain similar.

For the fourth numerical experiment conducted on the Robin-Neumann method, we change

the location of the interface to the two extremes and then we vary the diffusion coefficients to

understand how that affects the convergence criteria of the Robin-Neumann method. The below

plot shows us how the relaxation parameter affects the iteration count.
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Figure 7: Numerical Experiment-4 (a) — Robin-Neumann iteration — Coupled Poisson
Problem

From the above plots, we can observe that the convergence remains largely similar (when a1 > a2)

between the Dirichlet-Neumann method and the Robin-Neumann method. The convergence has

also significantly improved when compared to the numerical experiment 3. We can say that both

the position of the interface and the diffusion coefficients impact the convergence criteria.
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Figure 8: Numerical Experiment-4 (b) — Robin-Neumann iteration — Coupled Poisson
Problem

From the above plots (when a2 > a1) we can say that the convergence of the Robin-Neumann

method largely remains similar to the Dirichlet-Neumann method. This result is similar to what

was observed in the numerical experiment 3.

A.1.3 Dirichlet-Robin preconditioner

In this section, we discuss the convergence results for the problem when we apply the Dirichlet-

Robin preconditioner.
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For the first numerical experiment, we try to compare how the Dirichlet-Robin preconditioner

differs from the Dirichlet-Neumann preconditioner for the standard problem. Here the interface

is kept at the center, and the diffusion coefficients are kept to be one. The below plot shows us

how the relaxation parameter affects the iteration count.

From plot 9, we can observe that as we change αs from 0 (Dirichlet-Neumann case) to 2, the

convergence plot shifts to the right. We can also observe that convergence increases when there

is no relaxation as αs increases.

Figure 9: Numerical Experiment-1 —Dirichlet-Robin iteration — Coupled Poisson Problem

For the second numerical experiment conducted on the Dirichlet-Robin method, we keep the

diffusion coefficient to be one and we vary the interface position to understand how it impacts the

preconditioner. The below plot shows us how the relaxation parameter affects the iteration count.
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Figure 10: Numerical Experiment-2 — Dirichlet-Robin iteration — Coupled Poisson Problem

From the above plots, we can observe that, as we increase αs from 0 (Dirichlet-Neumann) to 1,

the entire convergence plot shifts to the right. The convergence behavior largely remains similar,

though the best convergence is observed for the Dirichlet-Neumann method.

For the third numerical experiment conducted on the Dirichlet-Robin method, we keep the

interface in the center and we vary the diffusion coefficient to understand how that affects the

convergence criteria of the Dirichlet-Robin method. The below plot shows us how the relaxation

parameter affects the iteration count.
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Figure 11: Numerical Experiment-3 — Dirichlet-Robin iteration — Coupled Poisson Problem

From the above plots, we can observe that the convergence plot tends to shift to the right with

lesser optimal convergence as αs increases. This is true for both the case when (a1 > a2) and

when (a2 > a1).

For the fourth numerical experiment conducted on the Dirichlet-Robin method, we change the

location of the interface to the two extremes and then we vary the diffusion coefficients to

understand how that affects the convergence criteria of the Dirichlet-Robin method. The below

plot shows us how the relaxation parameter affects the iteration count.
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Figure 12: Numerical Experiment-4 (a) — Dirichlet-Robin iteration — Coupled Poisson
Problem

From the above plots (a1 > a2), we can make an interesting observation where the Dirichlet-

Robin method tends to be superior to the Dirichlet-Neumann method, if αs is chosen correctly.

We can also see the generic behavior of this method where the convergence plot is moved to the

right as αs increases.
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Figure 13: Numerical Experiment-4 (b) — Dirichlet-Robin iteration — Coupled Poisson
Problem

For the case where a2 > a1, the convergence of the Dirichlet-Robin method tends to be similar

to the Dirichlet-Neumann method.

A.1.4 Robin-Robin preconditioner

In this section, we discuss the convergence results for the problem when we apply the Robin-Robin

preconditioner. We take the special case when (αf = αs) for the analysis.

For the first numerical experiment, we try to compare how varying the Robin parameter affects

the convergence of the Robin-Robin preconditioner for the standard problem. Here the interface
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is kept at the center and the diffusion coefficients are kept to be one. The below plot shows us

how the relaxation parameter affects the iteration count.

Figure 14: Numerical Experiment-1 — Robin-Robin iteration — Coupled Poisson Problem

From the above plot, we can observe that for all cases, the most optimal convergence occurs for

the system that has no relaxation. The most optimum Robin parameter turns out to be 0.5 for

this case when both the diffusion coefficients are equal.

For the second numerical experiment conducted on the Robin-Robin method, we keep the

diffusion coefficient to be one and we vary the interface position to understand how it impacts

the preconditioner. The below plot shows us how the relaxation parameter affects the iteration

count.
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Figure 15: Numerical Experiment-2 — Robin-Robin iteration — Coupled Poisson Problem

We can observe that, similar to the last experiment, for each case, the most optimal convergence

occurs for the system that has no relaxation. Also, we can observe that α = 0.5 is the optimum

relaxation parameter, same as the last numerical experiment. This indicates that the Robin

parameter is not dictated by the interface position.

For the third numerical experiment conducted on the Robin-Robin method, we keep the interface

in the center and we vary the diffusion coefficient to understand how that affects the convergence

criteria of the Robin-Robin method. The below plot shows us how the relaxation parameter

affects the iteration count.
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Figure 16: Numerical Experiment-3 — Robin-Robin iteration — Coupled Poisson Problem

We can observe that for all cases, the most optimal convergence occurs for the system with

no relaxation. Another point of observation is that for almost all cases where α > 0.5, the

convergence remains the same.

For the fourth numerical experiment conducted, on the Robin-Robin method, we change the

location of the interface of the two extremes and then we vary the diffusion coefficients to

understand how that affects the convergence criteria of the Robin-Robin method. The below

plot shows us how the relaxation parameter affects the iteration count.
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Figure 17: Numerical Experiment-4 (a) — Robin-Robin iteration — Coupled Poisson Problem

From the above plots (a1 > a2), we can make an interesting observation that for all cases, they

tend to have similar convergence plots irrespective of the interface position. It is also important

to note that the best convergence approximately occurs for the case with no relaxation.
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Figure 18: Numerical Experiment-4 (b) — Robin-Robin iteration — Coupled Poisson Problem

For the case where a2 > a1, the convergence of the Robin-Robin method tends to be similar

to the case when a1 > a2. It is also important to note that convergence is worse when the

relaxation parameter is less than 0.5 compared to the case a1 > a2.

B Specific code implementation

B.1 DOF extraction function

function get_node_dof_ids(reffe:: ReferenceFE {}, gmsh_tag :: Vector{String}, V:: FESpace;

↪→ vec_comp ::Int = 1)

# Get cell dofs

cell_dofs = Gridap.FESpaces.get_cell_dof_ids(V)

# Get the triangulation

trian = Gridap.FESpaces.get_triangulation(V)

# Get the Discrete Model from the triangulation

discrete_model = Gridap.Geometry.get_active_model(trian)

# Get dimensions

D = Gridap.Geometry.num_cell_dims(trian)

# Get the Grid Topology

grid_topology = Gridap.Geometry.get_grid_topology(discrete_model)

# Get the cell to d_to_dface mapping along with the offset

d_to_offset = Gridap.Geometry.get_offsets(grid_topology)

cell_to_faces = Gridap.Geometry.get_cell_faces(grid_topology)

# Exit the function if the size of cell_to_faces is zero or the triangulation is

↪→ not there in the local subdomain

if (size(cell_to_faces)[1] == 0)

return [],[]

end

# Get the facelabeling of the model
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facelabeling = Gridap.Geometry.get_face_labeling(discrete_model)

# Get the bool mask vectors for the tag given

d_to_dface_to_tag = [ Gridap.Geometry.get_face_tag_index(facelabeling ,gmsh_tag ,d)

↪→ for d in 0:D]

# Get the number of cells

numcells = size(cell_to_faces)[1]

@assert size(cell_to_faces)[1] == size(cell_dofs)[1] "Inconsistant number of cells;

↪→ quitting program"

numfaces = size(cell_to_faces [1]) [1]

# Understand the dof arrangement in reffe

dof_to_node = Gridap.ReferenceFEs.get_dof_to_node(reffe)

numnodes = maximum(dof_to_node)

numelem = size(dof_to_node)[1]

noderept = numelem/numnodes # To know number of components of the vector

@assert mod(numelem ,numnodes) == 0 "Inconsistent number of components in the vector"

# Create a cellfield of bools to know if a element has a tag

bool_cell_field = SparseArrays.spzeros(numcells ,numnodes)

# Looping over all cells

for cell = 1: numcells

for node = 1: numfaces

node_id = cell_to_faces[cell][node]

for j = 1:size(d_to_offset)[1]

if (node_id > d_to_offset[j] && j == size(d_to_offset)[1]) # Last face

↪→ node check

node_id = node_id - d_to_offset[j] # offset node_id

bool_cell_field[cell ,node] = d_to_dface_to_tag[j][ node_id ];

↪→ continue;

end

if (node_id > d_to_offset[j] && node_id <= d_to_offset[j+1])

node_id = node_id - d_to_offset[j] # offset node_id

bool_cell_field[cell ,node] = d_to_dface_to_tag[j][ node_id ];

↪→ continue;

end

end

end

end

# New Comparing the bool matrix to the cell dof matrix and add the intface DOFs

face_own_nodes = vcat([ Gridap.ReferenceFEs.get_face_own_nodes(reffe ,d) for d in

↪→ 0:D]...)

@assert size(face_own_nodes)[1] == numfaces "Inconsistent number of faces"

VGamma = Int[]

VGamma_dface = Int[]

for cell = 1: numcells

for node = 1: numfaces

if(bool_cell_field[cell ,node] == 1)

dof_node = face_own_nodes[node] .+ numnodes *( vec_comp - 1)

dface = cell_to_faces[cell][node ].*( ones(size(dof_node)[1]))

loc_dof = cell_dofs[cell][ dof_node]

append !(VGamma ,loc_dof)

append !( VGamma_dface ,dface)

end

end

end

indices = [findfirst (==(v), VGamma) for v in sort(unique(VGamma))]

VGamma = VGamma[indices]



Appendix 76

VGamma_dface = VGamma_dface[indices]

return VGamma , VGamma_dface

end

B.2 Matrix modification wrapper (FSI problem)

In this section, we explain the process of matrix modification required to couple the fluid and

solid domains.

Let us consider, we are trying to strongly impose the Dirichlet condition between the fluid

velocity and the solid displacement (u = ḋ). This would be equivalent to the following matrix

equation. [
0 0

0 0

][
ü

d̈

]
+

[
0 −I

0 0

][
u̇

ḋ

]
+

[
I 0

0 0

][
u

d

]
= 0

We use the generalized alpha method [14] to discretize and solve this ordinary differential

equation. We can rewrite the equation as the following with a, b, c as constant floating point

numbers.

a

[
0 0

0 0

][
ün+1

d̈n+1

]
+ b

[
0 −I

0 0

][
ün+1

d̈n+1

]
+ c

[
I 0

0 0

][
ün+1

d̈n+1

]
=

[
r1(ü

n, u̇n, un)− r2(d̈
n, ḋn, dn)

0

]

In Gridap, the data a, b, c and r1(ü
n, u̇n, un), r2(d̈

n, ḋn, dn) are readily available in the linear

stage operator struct as ws (tuple) and usx (tuple) respectively and are used in the matrix

modification process. The final modified matrix structure would be the following.[
c −b

0 0

][
ün+1

d̈n+1

]
=

[
r1(ü

n, u̇n, un)− r2(d̈
n, ḋn, dn)

0

]

Imposition of the Neumann interface condition weakly is straightforward as we are equating the

residuals of the fluid momentum equation with the solid equation along the trace of the interface.

Consider the uncoupled discrete problem.
CII GI CIΓ 0

DI 0 DΓ 0

CΓI GΓ CΓΓ 0

0 0 0 NΓΓ




üi

p̈

üΓ

d̈

 =


rfI

rfp

rfΓ

rs


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The coupled discrete problem after performing the matrix modifications would be the following.
CII GI CIΓ 0

DI 0 DΓ 0

0 0 cI −bI

CΓI GΓ CΓΓ NΓΓ




üi

p̈

üΓ

d̈

 =


rf

rp

r1(ü
n, u̇n, un)− r2(d̈

n, ḋn, dn)

rfΓ + rs


A new solver of the type linear solver is written to handle this matrix modification in Gridap.

The structure of the solver is the following. The DOF data is stored as a dictionary.

struct MatrixModifier <: LinearSolver

params ::Dict

ls:: LinearSolver

end

The matrix (left hand side) modification happens in the numerical setup function of the Matrix

Modifier solver. The vector (right hand side) modifications occur in the solve! function called by

the ODE solver.

B.3 Gridap Trilinos Interface

In this section, we provide the code to the C++ Gridap-Trilinos executable.

void TrilinosParallel(jlcxx::ArrayRef <double > A_nzval , jlcxx ::ArrayRef <int64_t >

↪→ A_rowval ,

jlcxx::ArrayRef <int64_t > A_colptr , jlcxx::ArrayRef <double > RhsVec ,

↪→ jlcxx::ArrayRef <double > LocSoln , jlcxx::ArrayRef <int64_t > RowPartition ,

jlcxx::ArrayRef <int64_t > ColPartition , int64_t LinSysSize , int64_t LocRowSize ,

↪→ int64_t LocColSize ,

jlcxx::ArrayRef <int64_t > OwnToValSol , jlcxx::ArrayRef <int64_t > OwnToValRow) {

// Setting the Global system size

Tpetra :: global_size_t numGblIndices = LinSysSize;

MPI_Comm yourComm = MPI_COMM_WORLD;

{

// Passing MPI comm to Trilinos

RCP <const Comm <int > > comm (new MpiComm <int > (yourComm));

const int myRank = comm ->getRank ();

const int numProcs = comm ->getSize ();

// Initialise FancyOStream

RCP <Teuchos :: FancyOStream > out =

↪→ Teuchos :: fancyOStream(Teuchos :: rcpFromRef(std::cout));

const bool verbose = (myRank == 0); // Only print on rank 0

//// Begin custom Tpetra map

Teuchos ::ArrayView <const global_ordinal_type > rowIndices(

reinterpret_cast <const global_ordinal_type *>( RowPartition.data()),

RowPartition.size());

Teuchos ::ArrayView <const global_ordinal_type > colIndices(

reinterpret_cast <const global_ordinal_type *>( ColPartition.data()),

ColPartition.size());

// Setting the IndexBase
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const global_ordinal_type indexBase = 0;

// Row Map Construction

RCP <const Tpetra_map > rowMap =

rcp(new Tpetra_map(numGblIndices , rowIndices , indexBase , comm));

// Col Map Construction

RCP <const Tpetra_map > colMap =

rcp(new Tpetra_map(numGblIndices , colIndices , indexBase , comm));

//// End custom Tpetra map

//// Begin Tpetra Matrix Assembly

const size_t maxNumEntriesPerRow = 100;

RCP <crs_matrix_type > A = rcp(new crs_matrix_type (rowMap ,colMap ,

↪→ maxNumEntriesPerRow)); // Initialization

// CSC Matrix Insertion using LocalInsert

for(int64_t col = 0; col < LocColSize; ++col){

int64_t start = A_colptr[col];

int64_t end = A_colptr[col + 1];

for(int64_t j = start; j<end;j++){

double value = A_nzval[j];

local_ordinal_type row = static_cast <local_ordinal_type >( A_rowval[j]);

local_ordinal_type Col = static_cast <local_ordinal_type >(col);

if(value == 0.0){continue ;}

A->insertLocalValues(row ,Teuchos ::ArrayView <const

↪→ local_ordinal_type >(&Col ,1),Teuchos ::ArrayView <const double >(&value ,1));

}

}

A->fillComplete ();

size_t locSize = A->getLocalNumRows ();

//// End Tpetra Matrix assembly

///// Begin Initializing Solution Vector

RCP <vec_type > x(new vec_type(A->getDomainMap ()));

↪→ x->putScalar(Teuchos :: ScalarTraits <scalar_type >:: zero());

///// End Initializing Solution Vector

//// Begin Right Hand side vector

RCP <Tpetra ::Vector <>> b = rcp(new Tpetra ::Vector <>(rowMap));

for(int64_t i = 0; i < LocRowSize; ++i){

local_ordinal_type row = static_cast <local_ordinal_type >(i);

double value = RhsVec[OwnToValRow[i]];

b->sumIntoLocalValue(row , value);

}

//// End Right Hand side vector

//// Begin converting Tpetra objects to Xpetra objects

RCP <Xpetra ::Matrix <scalar_type , local_ordinal_type , global_ordinal_type , NO>>

↪→ xpetra_A = MueLu:: TpetraCrs_To_XpetraMatrix <scalar_type , local_ordinal_type ,

↪→ global_ordinal_type , NO >(A);

RCP <Xpetra ::Vector <scalar_type , local_ordinal_type , global_ordinal_type , NO>>

↪→ xpetra_b = Xpetra :: toXpetra(b);

RCP <Xpetra ::Vector <scalar_type , local_ordinal_type , global_ordinal_type , NO>>

↪→ xpetra_x = Xpetra :: toXpetra(x);

//// End converting Tpetra objects to Xpetra objects

//// Begin Reading parameters list from input XML file

RCP <ParameterList > parameterList =

↪→ getParametersFromXmlFile ("src/parameters -2d.xml");

RCP <ParameterList > belosList = sublist(parameterList ,"Belos List");

RCP <ParameterList > precList = sublist(parameterList ," Preconditioner List");

//// End Reading parameters list from input XML file
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//// Begin constructing the preconditioner

RCP <onelevelpreconditioner_type > prec(new

↪→ onelevelpreconditioner_type(xpetra_A ,precList));

prec ->initialize(false);

prec ->compute ();

RCP <operatort_type > belosPrec = rcp(new xpetraop_type(prec));

//// End constructing the preconditioner

//// Begin solving the system using Belos

// Constructing the linear problem

RCP <operatort_type > belosA = rcp(new xpetraop_type(xpetra_A));

RCP <linear_problem_type > linear_problem (new

↪→ linear_problem_type(belosA ,xpetra_x ,xpetra_b));

linear_problem ->setProblem(xpetra_x ,xpetra_b);

if(locSize != 0){

linear_problem ->setRightPrec(belosPrec); // Specify the preconditioner

}

// Sending the parameters to the solver

solverfactory_type solverfactory;

RCP <solver_type > solver = solverfactory.create(parameterList ->get("Belos Solver

↪→ Type","GMRES"),belosList);

solver ->setProblem(linear_problem);

// Solve

Belos:: ReturnType ret = solver ->solve();

bool success = false; success = (ret==Belos :: Converged);

if (success) {

if (verbose)

std::cout << "\nEnd Result: Problem Solved !" << std::endl;

} else {

if (verbose)

std::cout << "\nEnd Result: Error in solving" << std::endl;

}

//// End solving the system using Belos

//// Begin copying the solution

auto x_data_host = x->getLocalViewHost(Tpetra :: Access :: ReadOnly);

for(size_t i = 0; i< LocRowSize; ++i){

LocSoln[OwnToValSol[i]] = x_data_host(i, 0);

}

//// End copying the solution

}

return;

}

void KokkosInitialize (){

Kokkos :: initialize ();

return;

}

void KokkosFinalize (){

Kokkos :: finalize ();

return;

}

JLCXX_MODULE define_julia_module(jlcxx:: Module& mod) {

mod.method (" TrilinosParallel", &TrilinosParallel);

mod.method (" KokkosInitialize", &KokkosInitialize);
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mod.method (" KokkosFinalize", &KokkosFinalize);

}

B.4 Sample input xml file

<ParameterList name=" Sample Input File">

<Parameter name=" Belos Solver Type" type=" string" value="GMRES"/>

<ParameterList name="Belos List">

<Parameter name=" Block Size" type="int" value ="1"/ >

<Parameter name=" Convergence Tolerance" type=" double" value ="1e-8"/>

<Parameter name=" Maximum Iterations" type="int" value ="1000"/ >

<Parameter name=" Verbosity" type="int" value ="33" />

<Parameter name=" Output Style" type="int" value ="1" />

<Parameter name=" Output Frequency" type="int" value ="1"/ >

<Parameter name=" Explicit Residual Test" type="bool" value="false"/>

</ParameterList >

<ParameterList name=" Preconditioner List">

<Parameter name=" OverlappingOperator Type" type=" string"

↪→ value=" AlgebraicOverlappingOperator "/>

<Parameter name=" Dimension" type="int" value ="2"/ >

<Parameter name=" Overlap" type="int" value ="1"/>

<ParameterList name=" AlgebraicOverlappingOperator">

<Parameter name=" Combine Values in Overlap" type=" string" value="Full"/>

<ParameterList name=" Solver">

<Parameter name=" SolverType" type=" string"

↪→ value=" Amesos2"/>

<Parameter name=" Solver" type=" string"

↪→ value=" Umfpack"/>

</ParameterList >

</ParameterList >

</ParameterList >

</ParameterList >

C Software versions used

• Julia - v1.10.5

• Gridap.jl - v0.18.12

• GridapDistributed.jl - v0.4.7 with PR 174

• GridapGmsh.jl - v0.7.2

• GridapSolvers.jl - v0.5.0

• PartitionedArrays.jl - v0.3.4

• LinearAlgebra.jl
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• SparseArrays.jl - v1.10.0

• BlockArrays.jl - v1.4.0

• Plots.jl - v1.40.13

• Trilinos - 16.1.0

• SuiteSparse - 7.8.2
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